
Remote Vital Signs Monitoring
with Depth Cameras

by

Ryan Chu

A thesis submitted in conformity with the requirements

for the degree of Master of Health Science

Institute of Biomedical Engineering

University of Toronto

Toronto, Ontario

c© Copyright by Ryan Chu 2020



Remote Vital Signs Monitoring with Depth Cameras

Master of Health Science

2020

Ryan Chu

Institute of Biomedical Engineering

University of Toronto

Abstract

Remote monitoring of vital signs provides a low-cost, non-intrusive method of

assessing an individual’s health. These systems have wide-ranging applications,

including detection of patient deterioration in clinical settings and home moni-

toring of at-risk individuals.

This thesis evaluates a novel remote vital signs monitoring system that in-

tegrates 3-D depth information and light intensity data to increase tolerance to

subject motion. We use 3-D depth analysis and measurement of reflected light

intensity due to blood volume variations to estimate heart rate and respiratory

rate, two important vital signs. This method achieves a mean error of 1.7 beats

per minute for heart rate and 0.05 breaths per minute for respiratory rate.

Furthermore, techniques are also described to quantify the severity of motion

artifacts, and methods of motion correction are applied to salvage physiological

data from noisy signals. Future work will include examining additional data

scenarios and improving analysis methods and motion tolerance.
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Chapter 1

Introduction

1.1 Motivation

Vital signs monitoring is a cornerstone of health care. Measurement of physio-

logical parameters such as heart rate, respiratory rate, oxygen saturation, blood

pressure, and body temperature allow quantification of a person’s overall state

of health and subsequent planning of treatment. In a clinical setting such as a

hospital, vital signs monitoring is ubiquitous in the form of electronic monitors

and physical sensors. Modern health care is highly dependent on the efficacy

and reliability of these devices. In recent years, several factors have led to a

shift of the health care industry to a greater emphasis on non-contact methods

of vital signs acquisition, referred to in this thesis as “remote” methods.

With an aging global population, development of health care technologies is

more important today than ever before. It is well established that the elderly

population is highly susceptible to adverse health events. It is estimated by the

United Nations that by 2050, the number of people in the world above the age

of 65 is expected to nearly double compared to 2019 [1]. This trend, along with

increasing complexity of hospital care and shortage of nursing staff [2], may po-

tentially create a heavy burden on the health care system. Hence, the need for

new health monitoring technologies and strategies is likely to increase dramati-
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cally in the next few decades. Remote vital signs monitoring is expected to play

a significant role in this new age as a promising technology for both clinical and

at-home monitoring. This section discusses different motivating factors for its

continued development, as well as potential use cases and applications.

1.1.1 Detecting Patient Deterioration

One of the benefits of remote monitoring of a continuous nature is the ability

to mitigate “failure-to-rescue” mortality. Patients who undergo surgery are at

a high risk of postoperative complications, with observed rates of 33-44% [3].

These complications, when managed poorly, result in significant morbidity and

mortality rates [4]. As a method of detecting complications in hospital settings,

vital signs are often used to form early warning scores (EWS), which serve as

an indicator to detect deterioration of a patient. While EWS systems have been

shown to be beneficial, they consist of manual observations by clinical staff and

thus are subject to human interpretation and error [5]. Additionally, outside

of the intensive care unit (ICU), their intermittent nature in the form of “spot

checks” leads to inaccurate representations of a patient’s physiological state [6],

[7]. These factors contribute to undetected patient deterioration that leads to

otherwise preventable complications. Hence, there is a need for a continuous

vital signs monitoring system that would ideally take the form of an ambient,

remote sensor to minimize discomfort. Such ambient methods have been shown

to ease the burden on patients by providing increased comfort, mobility, and

unobtrusiveness [8]. Patient attitudes towards continuous remote monitoring

have been generally positive as they benefit from increased safety and sense of

reassurance [9]. Some have cited concerns with data privacy but were willing

to share data if emerging health problems could be identified [10]. In this

context, “continuous” refers to constant monitoring to avoid long gaps in time

where the patient’s condition is effectively unknown. To facilitate this, vital

signs information can be generated on a rolling basis using a specified sample

duration. This ensures that adverse events are promptly detected.

Buekers et al. [11] demonstrated the usefulness of continuous monitoring by
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providing chronic obstructive pulmonary disease (COPD) patients with wear-

able pulse oximeters for oxygen saturation measurements. These devices re-

vealed significant fluctuations in oxygen saturation that were not apparent with

the low-frequency spot checks that are normally performed in a hospital ward.

Based on this discovery, the authors warned that data measured from spot

checks should be interpreted with caution.

1.1.2 Disadvantages of Contact Methods

Common contact-based methods of vital signs monitoring include the electro-

cardiogram (ECG) and pulse oximeter. In a clinical setting, these typically take

the form of self-adhesive electrodes and a finger clip, respectively. Images of this

equipment are shown in Figure 1.1. In addition to patient discomfort, a major

disadvantage of these sensors is the occurrence of poor or loose connections,

often the result of improper skin preparation or lack of proper changing, which

require nursing staff to repeatedly reapply them. Poor connections contribute

to false alarms, which in turn contribute to alarm fatigue among nursing staff

due to an overwhelming number of devices and sensors per patient. Alarm fa-

tigue has been identified as a negative factor in patient safety and has even been

shown to be responsible for cases of patient death [12]. A transition to remote

patient monitoring would be a step towards alleviating the issue of alarm fatigue

caused by contact-based sensors.

Figure 1.1: Conventional equipment for vital signs monitoring. a) ECG self-
adhesive electrodes. b) Pulse oximeter. Taken from [13], [14].

Aside from alarm fatigue, self-adhesive electrodes from bedside monitors
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have been shown to cause skin irritation in a small number of patients [15].

Some case studies have shown patients with allergic reactions to material in

the electrodes, a condition called contact dermatitis [16]. Furthermore, cables

and wires leading from the monitors can cause mobility issues for patients,

particularly when they leave their bed to walk around or use the restroom. Skin

contact must also be prevented in certain groups of patients, such as neonates

or patients with skin damage.

1.1.3 Telemonitoring

Along with the development of monitoring technologies in clinical settings, var-

ious factors have led to interest in telemonitoring, particularly for the elderly

population. Using wearable or remote sensors, adults with chronic health con-

ditions can be safely monitored at home without direct hospital surveillance.

Miniaturization of sensors and ever-increasing rates of smartphone usage facili-

tate the development of both wearable and ambient health monitoring systems

that continuously acquire data from the patient. This results in an improved

quality of life and reduced health care costs by creating a proactive approach

to treatment via early detection and intervention [17]. Detecting deterioration

early can reduce or prevent hospitalization, saving time and money. Telemon-

itoring is commonly used for conditions such as chronic heart failure, chronic

obstructive pulmonary disease, and diabetes mellitus [18]. As the patient does

not need to be hospitalized, their mental wellness also sees improvement. A

portable, low-cost system for health monitoring is ideal for these cases.

Telemonitoring also has uses in isolated and low-income communities where

access to hospital care is difficult, expensive, or unavailable. Patients in re-

mote areas can easily communicate with health care professionals via online

consultations and share data proactively, potentially reducing the occurrence

of medical emergencies. It has been shown that health status is inversely pro-

portional to remoteness [19], which emphasizes the importance of telemedicine

and telemonitoring for such communities. Integration of telemonitoring into

remote communities should be analyzed on a case-by-case basis, due to unique

4



logistical and social characteristics of each location. If enough data can be gath-

ered, it may facilitate large-scale epidemiological surveillance for entire regions,

providing a strong boost to public health and safety [20].

1.1.4 Public Health Applications

The usefulness of remote health monitoring is evident in times of public health

crisis, most recently seen in the COVID-19 pandemic, as the nature of a conta-

gious disease requires proper physical distancing and protection to avoid trans-

mission. Symptoms of COVID-19 include fever, elevated heart rate, and short-

ness of breath [21], [22], all of which are detectable via remote monitoring.

Once symptoms and characteristics of a disease are identified, they can be pro-

grammed into a system database; a subject’s vital signs can then be matched

with a disease or condition in the database for screening purposes. Such a sys-

tem, implemented in the form of a kiosk or ambient sensor, can be used to screen

patients who enter a hospital for disease symptoms. Other possible locations

include airports, factories, construction sites, sports events, and more.

1.2 Overview of Vital Signs

1.2.1 Heart Rate

Heart rate (HR) is one of the easiest vital signs to measure yet contains an

abundance of information about a person’s overall health. A normal resting

HR lies between 60 to 100 beats per minute (BPM) in adults [23]. A high

resting HR is associated with cardiovascular morbidity and mortality, as well

as the occurrence of sudden adverse events such as myocardial infarction and

long-term heart failure. An increase in HR by 10 BPM has been shown to

be associated with a 20% increase in risk of cardiac death [24]. This risk is

significant in both young and elderly persons. Elevated resting HR results in

higher mechanical stress on blood vessel walls and is shown to be correlated with

increased arterial stiffness, one of the risk factors for the development of chronic
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cardiovascular complications such as atherosclerosis [25]. Lifestyle factors also

associate it with hypertension, obesity, and lower amounts of physical activity.

HR is typically measured using ECG or a pulse oximeter, both contact-based

methods. The former measures electrical impulses and the latter is an optical

method for measuring blood volume changes due to pulse.

Due to the origin of heartbeat as an electrical pulse from the sinoatrial node,

monitoring a subject’s HR over time can provide insight into the autonomic

nervous system (ANS). Heart rate variability (HRV) is the natural variation in

HR and cardiac output as regulated by neural and hormonal factors [26]. HRV

is typically evaluated in the time-domain as the time between successive R waves

of the ECG reading. Increased HRV parameters are seen in healthy subjects, as

this reflects the ability of the heart and the nervous system to dynamically adjust

cardiac output based on the need of the body [27]. Figure 1.2 shows an example

of how HRV changes between healthy and diseased persons. HRV analysis is

useful to assess mortality risk in post-infarct patients, as well as a variety of

conditions that involve cardiac autonomic dysfunction such as diabetes, stroke,

and multiple sclerosis [27].

Furthermore, HRV has been used to assess an individual’s stress level. Psy-

chological stress is correlated with physiological changes, namely a significant

decrease in the amplitude of HRV [28]. The vagus nerve is responsible for

regulating parasympathetic control of the heart and lungs. Under stressful en-

vironments, the activity of the vagus nerve decreases, causing parasympathetic

deactivation and a subsequent decrease in HRV. Vagus nerve activity is diffi-

cult to measure directly, so HRV is used as a reliable indicator of stress. This

provides an objective evaluation of an individual’s stress level that cannot be

obtained with subjective psychometric assessments [29].

1.2.2 Respiratory Rate

Respiratory rate (RR), measured in breaths per minute (BrPM), is a vital sign

that provides insight into neural and pulmonary functions. It is often cited to be

a physiological parameter that is accurately indicative of early deterioration of a
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Figure 1.2: Example of heart rate variability in a) healthy subject and b) patient
with diabetes and autonomic neuropathy. Horizontal axis represents time in
milliseconds between heartbeats. Modified from [27].

patient, as well as a predictor of adverse events and ICU admission [30]–[32]. It

has been shown that changes in RR can precede other physiological changes such

as oxygen saturation [33]. Normal resting RR lies between 6 and 20 BrPM; lower

or higher rates are associated with unwellness and increased patient mortality

[34]. Techniques to monitor RR include airflow measurements, acoustic sensing,

air temperature/humidity measurements, and monitoring chest wall movement.

RR can also be obtained through certain cardiovascular measurements. These

techniques are summarized in Figure 1.3.

Respiration in humans can be classified as one of two types: chest/shallow

breathing and abdominal/diaphragmatic breathing. Shallow breathing is cre-

ated by movement of the intercostal muscles rather than the diaphragm and

results in an inward-outward movement of the chest. Rapid, shallow breath-

ing is referred to as tachypnea and is associated with respiratory distress [36].

Conversely, diaphragmatic breathing is a deeper form of breathing that involves

flattening of the diaphragm during inhalation, which pushes the abdominal wall

out. It is shown to reduce stress and improve mental function [37].
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Figure 1.3: Contact-based techniques for measuring respiratory rate by method.
Taken from [35].

Despite its proven usefulness, RR is often measured or interpreted inaccu-

rately in clinical settings, leading some to call it a “neglected” vital sign [34].

Clinical staff have low confidence that RR recordings are reliable, believing that

they are often estimated due to perceived lack of time for proper measurement

[38]. This attitude has led to (and is further caused by) a belief that collect-

ing accurate RR as part of clinical rounds is not essential, despite organization

requirements dictating it as a necessity [31]. Hence RR is often unrecorded, or

in some cases, recorded incorrectly, which can lead to misleading clinical care.

In cases where it is recorded, manual counting is the most frequent method of

measurement, despite capnography being the gold standard method [32]. This

culture of neglect prevents clinicians from taking full advantage of a highly useful

physiological parameter that is ultimately easy to measure and does not require

complex technology. The integration of continuous monitoring would be greatly

beneficial to alleviate this problem, as it would require little to no attention

from nursing staff to accurately capture respiratory data from the patient.
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1.2.3 Oxygen Saturation

Oxygen saturation in blood is dependent on hemoglobin and is defined as the

ratio of oxygenated hemoglobin (oxyhemoglobin, HbO2) concentration to total

hemoglobin concentration, which refers to the sum of HbO2 concentration and

deoxyhemoglobin (Hb) concentration. Oxygen saturation is represented as a

percentage with a normal range of 94-100% in healthy adults; values lower than

93% are generally considered hypoxemic [39]. While invasive blood gas analysis

remains the gold standard for arterial oxygenation measurement, the develop-

ment of pulse oximetry in the 1980s provided a non-invasive indirect method

that is widely used in clinical settings [40]. Oxygen saturation refers to arterial

saturation, but is most commonly measured as peripheral oxygen saturation

(SpO2), which is most easily obtained using pulse oximeters. Peripheral in this

case refers to measurements at locations such as the fingers or ears. Other vari-

ations are arterial (SaO2), venous (SvO2), and tissue (StO2) saturation, which

are typically measured invasively. SpO2 is calculated as shown in Equation 1.1.

SpO2 =
[HbO2]

[Hb] + [HbO2]
(1.1)

Unlike HR and RR, SpO2 is difficult to measure without equipment. The

most reliable physical indicator is cyanosis of the hands and feet, which typically

begins to occur at around 75% saturation [41]. Since the brain begins to develop

visual and cognitive deficits at around 80-85% saturation [42], this is not a

reliable indicator. Hence in a clinical setting, measurement of SpO2 necessitates

the application of a pulse oximeter.

1.3 Vital Sign Measurement Techniques

Acquiring vital signs through remote methods requires extensive utilization of

optical techniques and understanding of human physiology. This section will

focus on camera-based approaches to extract physiological information.
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1.3.1 Light Interaction with Tissue

Photoplethysmography (PPG) is a low-cost optical technique that is used to

detect blood volume variations in tissue, which can be used to retrieve vital signs

such as heart rate, respiration rate, and oxygen saturation. PPG is believed to

measure variations in reflected or transmitted light that are affected by the

presence of chromophores in blood; these variations are collectively known as

the blood volume pulse (BVP). While this theory for the origin of PPG (known

as the volumetric model) is occasionally disputed, it is sufficient to support the

use of PPG in clinical applications and therefore is generally accepted [43]. PPG

performed without contact is referred to as remote PPG (rPPG).

In order to explain the origin of the PPG signal, a model must first be de-

vised for skin reflectance. Figure 1.4 illustrates a light source illuminating skin

tissue and a camera capturing reflected light. It is assumed that the light source

has a fixed spectral composition. When incident light reaches the skin, approx-

imately 4-7% is reflected off the skin surface as specular reflection regardless

of wavelength and skin tone [44]. This specular reflection contains the same

spectral composition as the incident light, but contains no useful physiological

information.

Figure 1.4: Skin reflectance model illustrating specular and diffuse reflection.
Taken from [45].
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The remaining light that penetrates the skin undergoes two processes: ab-

sorption and scattering. The substances in blood that are primarily responsible

for absorption are Hb and HbO2 in the dermis. The wavelength-dependent ex-

tinction spectra for both chromophores are shown in Figure 1.5. The extinction

coefficient, also known as the attenuation coefficient, is the sum of the absorp-

tion coefficient (μa) and the scattering coefficient (μs). In the visible spectrum

(450-700 nm), Hb absorption peaks at approximately 555 nm, whereas HbO2

peaks at approximately 540 and 575 nm. Higher absorption results in less light

transmitted. Note that water is not a significant absorber of light at these

wavelengths.

Figure 1.5: Extinction spectra for Hb and HbO2. Taken from [46].

Light that is not reflected off the skin surface or absorbed undergoes the

process of scattering, which is defined as a change in direction, polarization,

or phase of light within a medium [47]. No energy is lost during a scattering
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event. Scattering is particularly significant in the ultraviolet (UV), visible, and

near-infrared (NIR) spectra due to photon interactions with cellular structures,

though less occurs in the NIR spectrum. A photon’s path within tissue can be

modelled using the mean free path (MFP) approach, which is defined as the

average distance that a photon will travel between two scattering events. The

MFP is calculated as follows:

MFP =
1

(µa + µs)
(1.2)

In most tissues, it is assumed that µs � µa, hence Equation 1.2 can be simplified

to:

MFP ≈ 1

µs
(1.3)

The MFP is approximately 100 μm in tissue, though this value will vary slightly

depending on the type of tissue. When a photon travels through tissue and un-

dergoes multiple scattering events, the angle at which the photons are scattered

must be taken into account. This new parameter, called the transport mean

free path (TMFP), is defined as follows:

TMFP =
1

µs(1− g)
(1.4)

where g is a function that defines the probability of forward scattering as a

Henyey-Greenstein phase function [48]. g is typically 0.8 to 1 for tissue scatter-

ing, meaning that the scattering is mostly in the forward direction. A higher g

means deeper penetration distances and a longer travel time before photon dif-

fusion. By the nature of randomness, a percentage of photons will penetrate into

deeper skin layers and be reflected, emerging from the skin as diffuse reflection

(shown in Figure 1.4). It is this reflected light that contains useful physiological

information.

For diffuse reflected light to contain pulsatile information, light must pen-
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etrate deeply enough to reach arterioles in the dermis in order to be affected

by absorption from Hb and HbO2. Skin models typically separate the skin and

underlying tissues into three layers as illustrated in Figure 1.6: the epidermis,

dermis, and hypodermis. The epidermis consists mostly of dead skin cells and is

approximately 800 μm thick on the finger pad [43]. The dermis contains capil-

lary loops and arterioles. The hypodermis contains subcutaneous fat, connective

tissue, and arterioles and arteries.

Figure 1.6: Model of the skin as stacked layers. Taken from [43].

Due to scattering and absorption coefficients being highly dependent on light

wavelength, different wavelengths of light will penetrate to different depths, as

shown in Figure 1.7. Moço et al. [43] showed that green wavelengths are suf-

ficient to retrieve dermal BVPs, and red-NIR wavelengths can reach as far as

subcutaneous arterioles. This is in agreement with the absorption spectra in

Figure 1.5; lower absorption corresponds to deeper penetration. Martinez et al.

[49] observed that optimal wavelengths for extracting HR were 480-610 nm (vis-

ible) and 800-925 nm (NIR), whereas optimal wavelengths for RR were 450-490

nm (visible) and 600-980 nm (NIR). Thus, changes in intensity of reflected light

reveal pulsatile information caused by absorption and scattering throughout

different skin layers.

13



Figure 1.7: Different depths of light penetration depending on wavelength. Mod-
ified from [50].

A typical PPG signal can be divided into two components as shown in Fig-

ure 1.8: a DC component determined by the medium in which the light passes

through (tissue, bone, non-pulsatile components of blood, etc.), and an AC com-

ponent created by variations in blood volume [51]. The AC component therefore

contains pulsatile information that can be used to measure HR. Amplitude of

the PPG signal is typically calculated as the ratio of the AC component to the

DC component.

1.3.2 Retrieving Vital Signs from Camera Images

Various camera channels have been used to retrieve BVP from intensity of re-

flected light, most commonly RGB (visible) and NIR channels. Some systems

utilize a dedicated light source, though ambient light is often sufficient. One of
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Figure 1.8: AC and DC components of a PPG signal. Taken from [51].

the earliest published systems for video-based non-contact pulse measurements

came from Poh et al. [52], [53] in 2010. Their system utilized a built-in laptop

RGB webcam with resulting red, green, and blue channels and an intensity-

varying signal from each. These three signals, spatially averaged from pixels on

the subject’s face, were decomposed into independent source components us-

ing blind source separation. Through independent component analysis (ICA), a

PPG signal with a strong frequency peak was observed in one of the components,

leading to the extraction of HR via frequency analysis. The same group later

expanded on this approach by using a five-band camera with red, green, blue,

cyan, and orange channels, finding the strongest PPG signal with a combination

of cyan, green and orange [54].

In 2015, Kumar et al. analyzed the rPPG signal from different areas of the

face, combining signal from various regions to create a weighted average [55].

By dividing the face into a grid of small regions and using frequency analysis,

they developed a goodness metric to show that the strongest rPPG signal occurs

in the forehead and cheek regions of the face. This approach is shown in Figure

1.9. The final weighted average signal showed close correlation with the ground

truth PPG waveform.

While PPG is primarily used for isolating the BVP waveform to gain insight
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Figure 1.9: Creation of a goodness metric for judging the PPG signal strength
for areas of the face. Strongest signal can be observed in the forehead and cheeks
regions. Taken from [55].

into pulsatile activity, features linked to respiration have been identified in PPG

data [56]. These features, illustrated on an example PPG waveform in Figure

1.10, describe the relationship between respiration and cardiovascular activity

as follows:

• Respiratory induced frequency variation (RIFV): Periodic changes in HR

are modulated by the ANS, causing HR to synchronize with the respiratory

cycle. This synchronization is known as respiratory sinus arrythmia.

• Respiratory induced intensity variation (RIIV): Changes in the baseline

of the PPG signal are caused by intrathoracic pressure variations relat-

ing to respiration, creating an intensity-varying signal due to changes in

perfusion.

• Respiratory induced amplitude variation (RIAV): Pulse amplitude changes

are caused by decreasing cardiac output during inspiration due to reduced

ventricular filling.

Thus, respiration presents itself in PPG data, making it possible to extract RR

from PPG waveforms.

A common drawback of video-based PPG is high susceptibility to motion
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Figure 1.10: Respiratory features illustrated in an example PPG waveform.
Taken from [57].

artifacts; a slight shift in subject position can introduce significant noise that

overpowers the physiological signal. This is a significant challenge with rPPG

due to the relatively low amplitude of the BVP signal. Publications by de

Haan et al. [58], [59] improved on motion robustness in RGB video by us-

ing a linear combination of red, green, and blue channels, developing so-called

“chrominance” methods. Li et al. [60] demonstrated an early method of mo-

tion tolerance by taking the image intensity signal of the face, dividing it into

smaller segments, and calculating the standard deviation (SD) of each segment

as shown in Figure 1.11. Higher SD values indicate a corrupted segment, and

the respective segment is removed from the overall signal. The signal is then

re-concatenated for frequency analysis. While the authors did not define an

exact term for this process, we have termed this kind of motion tolerance as

“motion rejection”.

The main challenges of rPPG monitoring can be summarized in four cat-

egories: motion artifact susceptibility, ambient illumination variations, image

quality, and spectral band selection [23]. Subject motion introduces strong

artifacts against the relatively sensitive measurements involved in rPPG moni-

toring, necessitating compensation in practical scenarios where subjects cannot

remain entirely still. Illumination variations are a concern especially in out-
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Figure 1.11: Example of motion rejection. Corrupted signal segments are de-
tected by high SD values and removed from the signal. The remaining segments
are then re-concatenated to form a continuous signal. Taken from [60].

door environments, but also in common indoor scenarios due to factors such as

changes in screen brightness. Changing illumination skews extracted intensity

signals, potentially causing under or over-illumination. Image quality is affected

by several factors including sensor properties, frame rate, and pixel resolution;

the latter two must often be balanced due to bandwidth constraints. Finally,

as explained in the previous section, the choice of spectral band (visible, NIR,

etc.) affects the depth at which backscattered light is influenced by blood vol-

ume variations. As a result, the intensity of diffuse reflections will vary based

on camera wavelengths, which lead to certain wavelength bands being superior

at extracting vital signs, as shown by [49].

1.3.3 Head Ballistocardiography

Pulsatile activity is associated with periodic head oscillations due to the ejection

of blood from the heart through the carotid arteries during systole. Measure-

ment of these subtle body movements is known as ballistocardiography (BCG),

which has recently gained a resurgence of interest due to improved techniques

for motion measurement and signal processing [61]. The use of BCG to measure

cardiac activity typically refers to measurements of gross body motion in the
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longitudinal direction; a subject would typically stand or lie on a low-friction

platform, and displacement of the platform would be tracked over time. Using

the head is of interest due to its relatively non-rigid movement relative to the

rest of the body, and head motion associated with pulsatile activity has been

recorded as artifacts in magnetic resonance imaging [62], showing that such a

signal exists and can be recorded. However, there are several types of invol-

untary movement that complicate the use of head BCG, including oscillating

motion that keeps the head in positional equilibrium and head motion associ-

ated with respiration [63]. Figure 1.12 shows a measured BCG waveform for

one heartbeat, with the three most prominent waves referred to as the “IJK

complex” [64].

Figure 1.12: A standard BCG waveform measured in the longitudinal direction.
Major waves are labelled, with the IJK complex being most prominent. Taken
from [64].

Da He et al. [65] demonstrated head BCG measurements using an ear-

anchored accelerometer to provide tri-axis acceleration values. Their results

showed the most significant head motion in the y-axis (upward-downward di-

rection) when the subject is standing at rest, as shown in Figure 1.13. They

were also able to measure the time between the heart’s left ventricular depolar-

ization (the R wave on ECG) and the strongest ballistic force on the body (the

J wave on BCG), which is referred to as the RJ interval and gives insight into

the heart’s contractility.

Balakrishnan et al. [63] demonstrated one of the first instances of detecting
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Figure 1.13: Accelerometer signals taken from the head in three axes. The
BCG signal appears strongest in the y-axis (upward-downward direction), but
can still be seen in the x and z-axes. Taken from [65].

HR using video-based BCG. Their approach identified features on the subject’s

face and tracked their movement in the longitudinal direction over time. Prin-

cipal component analysis was applied on the resulting signals to generate a set

of source signals, at least one of which contained a strong frequency peak repre-

sentative of the HR. Interestingly, this approach does not require direct view of

the subject’s face, being able to pick up HR from the back of the head as well as

when the face is obscured by a mask. Video-based BCG was also demonstrated

by Shao et al. [66], who used the mouth area to identify features to track. Their

results agreed strongly with rPPG-derived HR values. Al-Naji et al. [67] used

a similar approach, but were able to pick up vital signs at long distances (up to

60 m) by using magnification techniques.

1.3.4 Depth Sensing

Depth sensing in this context involves retrieving information about the distance

between the camera and the environment in the camera’s frame, often referred to
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as the z-axis. There are three major types of approaches towards depth sensing:

stereo triangulation, time-of-flight, and structured light imaging. Illustrations

of these three methods are shown in Figure 1.14.

Figure 1.14: Illustrations of depth sensing methods. Images taken from [68].

Stereo triangulation is one of the more popular approaches towards 3-D

depth sensing as it is low-complexity and low-cost. It involves using two slightly

offset camera sensors to capture images of an environment from two perspec-

tives, then calculating the disparity between the two images by matching points

from one image to another. Since no energy is emitted from the cameras, it

is considered a passive method. In order to derive physical dimensions from

disparity, the intrinsic and extrinsic parameters of the camera system must be

known, including the distance and angle between the two sensors. As the hor-

izontal distance between the two imagers (called the baseline) increases, depth

resolution increases along with the minimum and maximum ranges of the sys-

tem. A drawback of stereo triangulation is its requirement to match points from

one image to another; surfaces in the environment that lack significant texture,

such as flat walls, can introduce “holes” in the depth image where the disparity
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algorithm cannot match points.

Time-of-flight (ToF) imaging utilizes the speed of light to determine depth.

A laser pulse is emitted from the camera and a precise timer measures the

amount of time it takes for the pulse to return after being reflected off the envi-

ronment. LIDAR (an acronym of ”light detection and ranging”) is an example

of ToF imaging and is commonly used in vehicles and robotics. ToF imaging

has depth resolution in the order of millimeters and has exceptional range, but

requires specialized equipment and suffers from crosstalk, in which the detector

cannot distinguish between different pulses arriving at the same time [69]. This

also means that the performance of ToF cameras occasionally suffers in outdoor

conditions.

Structured light cameras involve projecting a known pattern of typically

infrared light onto an environment and detecting how the pattern appears to

the camera. The pattern can vary spatially or temporally. Objects in the

environment will naturally warp the shape of the light pattern; the severity

of the distortion will vary based on its distance to the camera. This type of

imaging shares the same drawback of ToF imaging, namely that it is susceptible

to interference from other light sources. Furthermore, structured light imaging

is relatively low range, as it relies on accurately visualizing the distortion of the

projected pattern.

Several methods of vital signs detection with depth sensing utilize the Mi-

crosoft Kinect, a low-cost depth camera originally designed for entertainment.

The original Kinect camera used structured light imaging by projecting a NIR

pattern, whereas newer versions use ToF imaging for increased frame rate [70].

Yu et al. [71] utilized the Kinect to measure respiratory volume remotely

through movement of the chest wall, but encountered some difficulties with

rigid body movement, being unable to distinguish it from respiratory motion.

Centonze et al. [72] applied the same approach during sleep, finding sufficient

correlation with results from a polysomnograph. Yang et al. [73] utilized the

Kinect to estimate HR via 3-D motion tracking of the head, using several de-

noising procedures to overcome the inherent noisiness of the depth images.
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Using depth information to monitor vital signs is of interest because numer-

ous physiological processes are associated with some form of physical movement.

Intensity-based techniques are also susceptible to artifacts from subject motion,

which can be directly measured with depth information. Furthermore, most

depth sensing methods are illumination-invariant, which may allow for vital

signs monitoring in low-light environments or environments with constantly

changing illumination. Ideally, depth information could be integrated with

intensity-based techniques such as rPPG. Our system explores this, as described

in the next chapter.

1.4 Thesis Objectives

Remote monitoring of vital signs is a technology with several motivating fac-

tors behind its continued development, including potential applications in the

clinic, at home, and in a public environment. Vital sign measurement techniques

exploit the physiological processes behind these vital signs, such as changing in-

tensity of reflected light due to blood volume variations and body movement due

to respiration. Both intensity and depth-based techniques have been described

for extracting information for HR and RR estimation.

To the author’s knowledge, a system that correlates both intensity and 3-D

depth information to increase reliability and motion tolerance has not yet been

explored in existing literature. Each of these two channels has limitations when

used independently. Intensity-based approaches are highly susceptible to arti-

facts caused by gross subject motion and illumination variations. Conversely,

depth-based approaches have inherent depth noise that limits their accuracy,

and motion-based measurements such as head BCG are sufficiently small in

amplitude that they can be overshadowed by noise. Combining these two chan-

nels provides two independent methods of vital signs estimation, which increases

redundancy in the case that one method fails.

Using these channels, we have developed a system that makes use of both

intensity and depth data to estimate HR and RR from camera recordings. The
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system was designed with indoor ambient illumination as a light source, based

on the potential use cases in a clinic or home where an additional light source

may not be feasible. Data collected using the system consisted of one subject in

the camera frame, though analysis of multiple subjects is theoretically possible

with more intensive processing. The system requires no calibration for different

subjects. Hence, vital sign estimates can be feasibly acquired within a 10-

second interval for HR and a 30-second interval for RR, though longer durations

improve accuracy. In order for the system to remain minimally intrusive, the

system must be able to extract vital signs from a distance of at least 1.5 m

away from the subject. In a clinical setting, this would allow the camera(s) to

be placed at the foot of a bed or mounted on the ceiling. Finally, the system

must be tolerant to gross subject motion. While this is not as much of an issue

in clinical settings where the patient is mostly at rest, there are still events

that can cause a motion artifact, such as the subject shifting positions. The

objective is therefore to apply techniques to extract vital signs during motion

when possible, and if no vital signs can be retrieved, the system will identify

and discard motion-corrupted events.

This thesis will cover the following objectives:

1. Use intensity and depth information to independently extract vital signs

from each channel,

2. Identify motion artifacts and quantify their severity,

3. Apply motion tolerance to extract vital signs even during motion, and

4. Validate accuracy of novel system by assessing agreement with a reference.

System accuracy must be evaluated to ensure that HR and RR estimations

are correct. As with any measurement device, there is a level of error that is

present in the returned values. For example, the Masimo MightySat Rx pulse

oximeter reports an accuracy range of 3 BPM for HR (5 BPM during motion)

and 3 BrPM for RR [74]. For the purpose of validating the novel remote mon-

itoring system, the author chose to use these values as a target specification,

as the Masimo oximeter is used to monitor patients and thus would be a valid

24



system for comparison. The device has also received 510(K) clearance by the

Food and Drug Administration (FDA) in the United States. It is important to

note that specifications for accuracy may differ between environments, with clin-

ical settings requiring more precise measurements than home settings. Patients

in clinical settings are generally more susceptible to complications and adverse

events, necessitating greater accuracy of measurements for clinical evaluation.

Conversely, subjects at home who do not require hospitalization may be more

active and exhibit greater subject motion. In these cases, it may be necessary

to trade measurement sensitivity for greater tolerance to motion. Furthermore,

while the environment in a hospital room remains relatively static, a home en-

vironment may consist of varying backgrounds and illumination conditions. It

is important that the system is robust to these changing scenarios.

In the following chapter, the architecture of this novel system is discussed,

including methods of extracting physiological data from camera recordings and

techniques for improved motion tolerance.
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Chapter 2

Experimental Methods

2.1 Equipment

2.1.1 Intel RealSense Cameras

The Intel RealSense D400 Series Depth Cameras are stereo depth sensing cam-

eras equipped with NIR and RGB channels. There are four camera models in

the D400 series, shown in Figure 2.1: D415, D435, D435i, and D455; the latter

two are bundled with an inertial measurement unit (IMU). The D435 and D435i

are identical aside from the latter’s inclusion of the IMU.

Figure 2.1: The Intel RealSense D400 series. Images taken from [75].

The D400 cameras are lightweight and portable, making them ideal for a

remote monitoring setup. Depth sensing is achieved through active IR stereo

provided by two identical camera sensors, each of which is sensitive to visible and

NIR spectra (400-865 nm). Each module also has a dedicated color sensor for
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the RGB channel. The camera modules are bundled with an 850 nm structured

light projector, which provides illumination and increased depth accuracy in low-

texture environments. The cameras have a pixel resolution of up to 1280x720

and a frame rate of up to 90 frames per second (fps). The D415 uses a rolling

shutter, whereas the D435 and D455 use global shutters; for this reason, the

D415 requires a longer exposure time to capture images and is more sensitive to

fast-moving motion artifacts [76]. The D435 and D455 also have a wider field-

of-view (FOV) of 87◦ horizontal and 58◦ vertical compared to 65◦ horizontal

and 40◦ vertical for the D415. D435i and D455 cameras were used for the

majority of data collection due to the aforementioned global shutter allowing

faster exposure times and higher fps.

The two channels utilized from the RealSense cameras are 8-bit IR and 16-bit

depth. Example images from both channels are shown in Figure 2.2. Each of the

two IR imagers on the camera captures 8-bit IR images (16-bit IR is available

but is unrectified, and Intel does not recommend its usage outside of calibration

environments). Using these images and the known extrinsic parameters (i.e.

relative position and rotation) of the imagers, depth is calculated by estimating

the disparity between matching keypoints on the left and right images. Lower

disparity corresponds to a farther object. The resulting output is a 16-bit depth

frame that contains depth information for each pixel. The bitwise depth unit

is configured to be 0.0001 m, resulting in a theoretical maximum range of ap-

proximately 6.5535 m. The infrared structured light projector serves to project

texture onto an environment, which improves keypoint matching between left

and right images in areas with low texture. Note that depth is measured from

the parallel plane of the imagers and not the absolute range between the imager

and the object, as explained in Figure 2.3. Hence, the RealSense cameras use

a combination of stereo triangulation and structured light approaches to depth

sensing.

The nature of depth imaging means that there is a margin of error associated

with retrieved depth measurements. This depth error can be reduced with

proper exposure settings and pixel resolution. The theoretical limit for root-

mean-squared (RMS) depth error is:
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Figure 2.2: Example of images taken from a) 8-bit IR channel and b) 16-bit
depth channel. The textured pattern from the structured light projector can
be seen on the IR image. A colormap has been applied to the depth image for
better visualization. Shadowing artifacts are also visible on the depth image as
a byproduct of stereo depth imaging.

Figure 2.3: Illustrating the difference between depth and range. The RealSense
cameras return pixel depth values. Taken from [77].

Depth RMS error =
z2 · subpixel

f · b
(2.1)

where z is the depth distance, subpixel refers to the subpixel RMS error and

usually falls between 0.05 and 0.1, f is the focal length in pixels, and b is

the baseline, i.e. the physical distance between the center of the two imagers.

Hence, depth error is proportional to the square of the depth distance between

the camera and the object. The D455 is notable for having a baseline of 95 mm

compared to 55 and 50 mm for the D415 and D435 respectively, which reduces

the depth error by a factor of 1.9.

Software interfacing with the cameras is performed using the RealSense Soft-

ware Development Kit (SDK). A USB 3.0 connection is used to connect each
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camera to a PC. RealSense also supports multi-camera configurations for the

purpose of simultaneous image capture to either image an object from multiple

perspectives (inward-facing) or to create a wider FOV (outward-facing). There

is no significant crosstalk between cameras when their FOVs overlap. The cam-

eras must be hardware triggered to capture at the same time; one of the cameras

can serve as the master in this scenario to send trigger pulses to the remaining

slave cameras. Alternatively, an external triggering pulse can be used. Each

camera has a hardware sync port that is used to connect it to other cameras in

a network via a triggering cable.

2.1.2 Camera Setup and Configurations

The default experimental setup for single-camera data collection is shown in

Figure 2.4. The subject is standing a fixed distance away from the camera with

the option to either be standing or sitting.

Figure 2.4: Side-view schematic of a typical single-camera acquisition setup.
Intensity and 3-D depth channels are represented as different modules connected
to the host PC. The subject sits or stands 1.5 m away from the camera, though
this distance can be changed.

The use of multiple RealSense cameras allows a variety of camera configura-

tions that serve different purposes. The number of cameras is limited practically

by the processing power of the host PC and the number of independent USB

hubs due to bandwidth constraints. Our experiments have utilized up to three

synchronously triggered cameras positioned around the subject at various an-
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gles. Figure 2.5 shows three different configurations that have been used.

Figure 2.5: Multi-camera configurations. a) “Front-back” configuration, shown
from a side view. b) “Three-in-front” configuration, shown from an overhead
view. c) “360-degree” configuration, shown from an overhead view.

The “front-back” configuration shown in Figure 2.5a consists of two cameras,

one in front of the subject and one behind the subject. Thus, the cameras have

view of the subject’s front and back. The distance between the two cameras

is known. This configuration was used for an approach to motion tolerance

described in the next section.

The “three-in-front” configuration in Figure 2.5b uses three cameras placed

in front of the subject at 45-degree angles. The purpose of this configuration

is to have three sources of rPPG and depth signal to perform blind source

separation, as was done with RGB signals in [52]. Additionally, the use of three

angled cameras can potentially allow for construction of a more detailed face

model using depth information, which can provide insight into head motion.

The “360-degree” configuration in Figure 2.5c consists of three cameras
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placed at 120-degree angles around the subject. This setup ensures a view of

the subject’s front and back regardless of the angle that they are facing, which

is used for motion tolerance.

2.1.3 GE Dash Patient Monitor

The GE Dash 3000 Patient Monitor (shown in Figure 2.6) manufactured by

General Electric is a portable monitoring system used as a clinical gold standard

for the purpose of ground truth vital sign measurements. The Dash includes

several vital sign monitoring features, including ECG for HR and RR and a

pulse oximeter for SpO2 data.

Figure 2.6: GE Dash 3000 Patient Monitor.

For the purpose of obtaining physiological data to act as a gold standard

during subject data collection, a 3-lead ECG configuration was used along with

a pulse oximeter. Four electrodes, with right leg (RL) as a reference, are used to

form Einthoven’s triangle creating three lead configurations (I, II, and III) using

the left arm (LA), right arm (RA), and left leg (LL) as shown in Figure 2.7. The

location of these adhesive electrode pads was chosen to be easily accessible for

subjects to place by themselves. Methods used to extract data from the Dash

monitor are described in Section 6.1.
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Figure 2.7: ECG adhesive electrode placement. a) Four electrodes are placed on
the subject, one on the base of each limb. b) Einthoven’s triangle is formed from
the placement of electrodes, creating three ECG lead configurations. Images
taken from [78], [79].

2.2 Extracting Physiological Data

2.2.1 Retrieving Images

For each RealSense camera in the system configuration, a pipeline was con-

figured to save incoming frames to the PC’s random-access memory. Separate

computing threads would subsequently write the frames to the hard drive. Each

frame was assigned a number and a hardware timestamp by the camera proces-

sor as a method of detecting dropped frames, which could occasionally occur if

several cameras were connected and a bandwidth bottleneck was reached. Both

IR and depth images were saved individually in the Tagged Image File Format

(TIFF), a lossless image format.

2.2.2 Regions of Interest

A region of interest (ROI) is defined in this scenario as a selection of pixels with

which to extract values for the estimation of vital signs. As the subject can be

feasibly be located anywhere in the camera FOV, it is necessary to implement

automatic ROI detection.
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The cubemos Skeleton Tracking SDK [80] was used to detect skeleton key-

points on a subject within the frame. The skeleton tracking algorithm, when

run on an IR image, returns the pixel coordinates of 18 joints on each subject,

which can be used for ROI generation as shown in Figure 2.8. To generate a

chest ROI, a quadrilateral is defined with vertices consisting of the two shoul-

der joints (3 and 6) and the two hip joints (9 and 12). As shown, this ROI

generation remains robust even when the subject is standing at an angle away

from the camera. The quadrilateral is bisected based on its vertical height to

create two sub-ROIs for the chest (upper) and the abdomen (lower). For a more

detailed analysis, the quadrilateral can be divided into ten horizontal strips of

equal height to create ten sub-ROIs.

Figure 2.8: Generating ROIs for chest and abdominal regions. a) 18 joints are
detected on each subject. Chest and abdominal ROIs can be estimated based
on the detected joints. b) Detected chest ROI overlaid on an IR image. c) Chest
ROI detection is still possible when subject is standing at an angle away from
the camera. d) Chest/abdominal ROI can be divided into horizontal strips for
further analysis of motion based on area of the body.

While chest and abdominal ROIs are easily estimated with skeleton tracking,
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face ROI detection is more difficult due to the lack of reliable joints on the head.

The algorithm includes landmarks on the face (joints 1, 15, 16, 17, and 18), but

based on experimentation, the accuracy of these landmarks is generally low and

is often negatively affected by eyewear. A separate face detection method was

required.

Included in OpenCV 3.3 and later is a “deep neural network” (DNN) face

detector module that provides fast and accurate face detection. The detec-

tor draws a bounding box with returned coordinates of all faces in an image.

Initially, running the face detector on the entire image frame returned poor

results, likely due to the low pixel resolution of the face relative to the image

size. Therefore, an approach was taken to use skeleton tracking to generate an

approximate bounding region of where the face would be located based on the

detected joints. Using the two shoulder joints (3 and 6) as the lower vertical

bound, a rectangular box was defined with a width of twice the distance be-

tween the two joints and a height of three times the distance. The IR image was

cropped to this box and used as an input to the face detector, which accurately

detected the face with a > 95% confidence with front-facing subjects.

While [52] suggested to perform face detection on every individual frame, the

generated ROI moves slightly between frames, which introduces an additional

source of noise to the signal. To avoid this, a threshold was implemented to avoid

small shifts in ROI location, referred to as “jitter tolerance”. This tolerance

threshold, which is determined experimentally, causes the previous ROI to be

retained if the coordinate shift of the ROI between frames is below the threshold.

This jitter tolerance is applied to individual detected skeleton joints and the

vertices of the face ROI.

Once a face ROI is established, smaller sub-ROIs can be generated within

the face. These sub-ROIs consist of the forehead and the two cheeks. Figure 2.9

shows these ROIs on an IR image of a subject. The location of the forehead and

cheeks is calculated according to the overall face coordinates using proportions

based on the dimensions of the face ROI. These sub-ROIs were chosen as they

contain significant skin surface area that can be used for rPPG analysis.
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Figure 2.9: Example of sub-ROIs of the face.

2.2.3 Physiological Signal Processing

Based on the ROIs described in the previous section, both IR and depth values

were extracted from each frame as the mean value of all pixels in each ROI.

The result was several “raw” signals that required signal processing to identify

and extract physiological data. From experimentation, it was found that HR

could be reliably estimated from face IR intensity and face depth movement.

Under ideal conditions, a weak HR signal could also be detected from chest depth

movements. For RR, chest movement is the primary source of respiratory signal,

while face IR Intensity and face depth movement also allow RR estimation under

ideal conditions.

MATLAB, developed by MathWorks, was used for the processing of raw

IR and depth signals. For HR estimation, a Butterworth bandpass filter was

designed with the following parameters:

• Passband edge frequencies: 1 Hz, 2.16 Hz

• Stopband edge frequencies: 0.5 Hz, 3.33 Hz

• Passband ripple: 3 dB

• Stopband ripple: 10 dB
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The passband cutoff frequencies represent the approximate bounds of adult

resting heart rate: 60 – 130 BPM. These parameters were used as inputs to

the MATLAB function buttord, which returned the filter order and normalized

cutoff frequencies. The function butter then generated the filter design with

zeros, poles, and gain, which was converted to second-order sections with the

zp2sos function. Finally, the function filtfilt was used to perform zero-phase

filtering (also known as forward-backward filtering) on the raw signal, generating

a bandpass filtered waveform. Zero-phase filtering is used to prevent phase

distortion on filtering.

Once a bandpass filtered waveform is generated, the signal is inverted as

per conventions for PPG imaging in literature [81]. The reason for this is to

convert the measurement of reflected light into a proportional measurement of

absorbed light. Cubic spline interpolation is then applied to effectively increase

the sample rate by a factor of 1000. The purpose of this is to generate more data

points to increase peak detection accuracy. Peak detection is performed on the

interpolated waveform using MATLAB’s findpeaks function, with a specified

minimum peak distance of 60/130 = 0.4615sec, as 130 BPM is the maximum

heart rate defined by the bandpass filter. By averaging the time elapsed between

peaks, an estimated HR value can be generated for a given signal.

As an alternate approach, frequency analysis can be applied to HR esti-

mation. This involves performing a Fourier transform on the raw signal to

obtain the signal’s frequency spectrum. The frequency bin with the highest

power between frequencies 1 Hz and 2.16 Hz (the above method’s passband

edge frequencies) is taken as the HR frequency. While this method is relatively

straightforward, cases have been observed where the power of the HR frequency

bin is not high enough to distinguish from surrounding noise frequencies. A

comparison and analysis of these two techniques on participant data can be

found in Section 3.5.

For RR estimation, the raw signal is first detrended, removing the linear

trend line. In preparation for a Fourier transform, a Hann window is applied

to the detrended signal, then MATLAB’s fft function is applied, generating
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a frequency spectrum. The frequency bin with the highest power between 0.1

and 1.0 Hz (corresponding to 6 – 60 BrPM) is selected as an approximate

bandpass center frequency, fmax. This frequency serves as an early estimate

of RR. A bandpass filter is then applied with passband edge frequencies [0.7 ·

fmax, 1.3 · fmax] to refine the estimate. Peak detection is performed on the

bandpass filtered waveform and the average time between the peaks is taken to

calculate an estimation of RR. This approach is used for RR estimation and not

HR estimation because respiration tends to present a pronounced peak in the

frequency spectrum, whereas the frequency peak for HR may be more difficult

to determine.

2.3 Motion Tolerance Techniques

A drawback of conventional monitoring techniques, such as PPG, is significant

sensitivity to motion artifacts. These artifacts can manifest in the form of dis-

torted amplitudes or false signals. Motion of a periodic nature is particularly

corrupting as it appears in the frequency domain and imitates a periodic physi-

ological signal. This means that the subject must remain relatively still during

monitoring to prevent artifacts from occurring. Since it has been shown that

motion artifacts can be mitigated using accelerometers in wearable devices as a

reference [82], a similar approach can be applied to remote monitoring. Using

the depth channel of the RealSense cameras, depth information can be used

to track subject motion and identify corrupted signal regions, either rejecting

this data or developing techniques for compensation. The technique would vary

based on the severity of the artifact.

2.3.1 Identifying Motion-Corrupted Signal

In order to quantify the severity of a motion artifact, a metric must be developed

for the quality of a signal relative to the amount of corrupting noise. Two ap-

proaches were identified for this, the first being analysis of depth velocity. Given

a depth signal in a particular ROI, the derivative is calculated and plotted as
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the depth velocity. Large values in the depth velocity indicate sudden move-

ments and areas where the signal is corrupted. This velocity analysis, shown

in Figure 2.10b, can be applied to both depth values and intensity values, as

a sudden change in intensity is also indicative of corrupting motion. Alterna-

tively, a moving window can be applied to the depth velocity to calculate the

SD in each window. While SD is easy to calculate, it relies on detecting sudden

changes in intensity or depth and thus gives no information about the quality

of a signal when such changes are not present.

Figure 2.10: Identifying motion artifacts in a depth signal. a) Chest depth
signal contaminated by motion events, indicated by arrows. b) Instantaneous
chest velocity calculated as the derivative of the signal in (a). High velocity
values are indicators of motion events. c) Standard deviation of instantaneous
velocity calculated using a moving window. d) SNR analysis of the signal in
(a), showing significantly lower SNR values during motion events.

The second approach involves analysis of signal-to-noise ratio (SNR) via the

frequency domain. This type of analysis was described by Moço et al. [83],

in which the power of the physiological signal is compared to the signal noise

power. As a first step, the target frequency range is defined depending on the

vital sign of interest; for example, a frequency range of 1.0-2.16 Hz was used

38



for acquiring HR. The frequency bin with the highest power in this range is

defined as the fundamental frequency of the physiological signal. The signal

power Psignal is then calculated using the fundamental frequency bin and the

two immediate adjacent bins. Psignal is compared to the noise power Pnoise,

which is the total power of the remaining frequency bins not included in the

calculation of Psignal. In some instances, the first two harmonic frequencies

of the HR/RR are excluded from the noise, as they are still considered to be

components of the underlying signal. The ratio of Psignal/Pnoise is defined as

the SNR. An example is shown in Figure 2.10c, where a moving window was

used to calculate SNR on each signal segment using a target frequency range

of 0.1-1.0 Hz for respiration. This frequency domain approach is visualized in

Figure 2.11, with in-bands and out-bands illustrated.

Figure 2.11: Frequency bands used for the calculation of SNR. The signal in
this example is an HR-related signal. The in-band is selected as the fundamen-
tal frequency of the HR signal and surrounding frequency bins, whereas the
remaining bins (excluding 1st and 2nd harmonics of the HR signal) are taken
as out-bands. Summing the power of the bins in each band allow calculation of
SNR. Taken from [83].

Once motion has been identified in the signal, there are two methods of

correction that depend on the severity of signal corruption: rejection and com-

pensation.
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2.3.2 Motion Rejection

When severe motion artifacts are identified, it is challenging to salvage phys-

iological data from the corrupted signal. In these cases, motion rejection is

applied, in which the areas of corrupted signal are identified using either of the

aforementioned methods and removed from the overall data. This preserves the

remaining signal areas where physiological information can be extracted. This

approach was used by Li et al. [60], and an example is shown in Figure 1.11.

A drawback to motion rejection is that the original signal must be cut to

remove the corrupted areas, creating signal discontinuities. One approach is to

analyze each segment independently and compare the extracted vital signs for

each segment to determine the overall estimation. Alternatively, the segments

can be “stitched” together to form a continuous signal, as was done in Figure

1.11. This approach relies on the predominance of the physiological signal over

potential artifacts introduced by the stitching to produce an accurate vital sign

estimate.

2.3.3 Motion Compensation

Under less severe motion, it may be possible to extract physiological data from

the contaminated signal. The first approach utilized skeletal tracking on each

frame to dynamically resize and reposition the ROI as the subject moved. As a

more sophisticated method, one or more cameras can be used as a reference to

track when and how the subject moves. This allows vital signs to be extracted

even during periodic gross body motion. This approach utilized the “front-back”

configuration described in the previous section, allowing the subject’s front and

back sides to be recorded by the two cameras. ROIs of the subject’s chest and

back can either be drawn manually or generated using skeleton tracking. The

distance between the front and back cameras dtotal was set at 2 m. Based on

this, the depth of the subject’s thorax dthorax(t) could be calculated as follows:

dthorax(t) = dtotal–dfront(t)–dback(t) (2.2)
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where dfront(t) is the distance between the front camera and the subject’s chest

and dback(t) is the distance between the back camera and the subject’s back.

dthorax(t) changes as the subject breathes, increasing during inspiration and de-

creasing during expiration, following the natural expansion of the lungs. As the

subject moves between the two cameras, calculating dthorax(t) allows retrieval of

the respiratory waveform regardless of intensity or periodicity of body motion.

Sections 3.4.2 and 3.4.3 discuss how these methods are applied to experimental

datasets.

2.4 Summary

In this chapter, experimental methods for retrieving images, capturing signals,

and isolating physiological data were described. Various ROIs including the

face, forehead, cheeks, and chest have been illustrated. Two motion tolerance

techniques were discussed, namely rejection and compensation. In the following

chapter, we will discuss how this system is used to analyze experimental datasets

to retrieve estimates of HR and RR even when subject motion is present.
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Chapter 3

Results and Analysis

3.1 Overview

Extracting physiological information and estimating vital signs from camera

recordings is a multi-step process. Figure 3.1 shows a flowchart that illustrates

the processing pipeline of the remote vital signs system. Each numbered step

of the flowchart is explained below.

1. The system can consist of a single-camera with one FOV or multiple cam-

eras positioned in a certain configuration to simultaneous record images.

Each camera is equipped with an intensity channel and a depth channel.

Camera parameters such as resolution, frame rate, and exposure are set.

2. Intensity and depth images are recorded from each camera.

3. ROI generation combines methods such as face detection, skeleton track-

ing, and segmentation to generate ROIs as detailed in Section 2.2.2.

4. For each acquired frame, the value of the pixels within each ROI are

averaged to create a data point. This can be done for both channels.

Combining data points from every frame creates a waveform signal that

represents changing intensity or depth within an ROI over time.
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Figure 3.1: Flowchart for processing pipeline of remote vital signs monitoring
system.

5. As methods of quantifying the amount of motion contamination in a signal,

three approaches are applied: calculation of SNR, analysis of intensity

changes, and analysis of depth velocity.

6. If the above methods identify a severe motion artifact in the signal via a

drop in SNR or a sudden change in intensity or body velocity, rejection is

applied to the signal. Motion-contaminated signal segments are identified

and removed.

7. If less severe motion is present, motion compensation can be applied to

clean up the signal. Compensation can refer to different methods including
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ROI resizing or using a second camera as a reference.

8. When estimating RR, a bandpass filter is applied with a relatively low

frequency passband (0.1-1.0 Hz), whereas a higher frequency bandpass

filter (1.0-2.16 Hz) is applied for HR estimation.

9. For RR estimation, peak detection is performed on the filtered respiratory

waveform. The time intervals between the detected peaks are averaged to

obtain an estimate of RR for the sample period.

10. HR can be estimated from peak detection on the filtered respiratory wave-

form (peak analysis) or by detecting the frequency with the highest power

in the frequency spectrum of the signal (frequency analysis). These two

approaches are compared on participant data in Section 3.5.

Once estimations for HR and RR are obtained from recorded datasets, it is

necessary to evaluate their agreement with the gold standard bedside monitor.

To do this, Bland-Altman analysis [84] was used to plot the agreement of the

two measurements. Bland-Altman plots are used to quantify agreement by

constructing statistical limits using the mean and SD of the measurements; it

is often used in medical environments to evaluate a new method or instrument

[85]. These plots provide a graphical representation of both the mean bias and

the SD of the measurement errors. The measurement difference between the

gold standard and the remote system is plotted against the average/mean of

the two values in a scatter plot. While some studies involving a gold standard

will plot the difference against the gold standard measurement itself, Bland and

Altman have stated this to be misleading, as it will always imply a correlation

between the difference and the measurement magnitude even when there is none

[86]. Therefore, it was decided to plot the difference against the mean. Data

was collected from volunteer members of the lab group, as external participants

could not be recruited due to the COVID-19 pandemic.

Bland-Altman plots were generated using MATLAB code from [87]. For an-

alyzing the agreement of the remote monitoring system, nonparametric Bland-

Altman analysis was used. This was chosen due to the small number of subjects
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that were able to be tested; retrieved data was assumed to be non-Gaussian as

a result. This analysis was performed on a wide variety of data scenarios.

3.2 Heart Rate Results

3.2.1 Extracting Blood Volume Pulse

Figure 3.2 shows an example of results from analyzing single-camera datasets

to estimate HR. For simplicity, these datasets did not contain excessive subject

motion, meaning that motion correction methods were not used. The subject

was seated appoximately 1 m away from a D435 camera. The subject’s face was

taken as an ROI and raw signals from both intensity and depth channels were

retrieved. These signals were processed through a bandpass filter to generate

BVP waveforms. Peak analysis was used as the primary approach for HR es-

timation and an estimated HR value was generated from both channels. Note

that two different datasets are presented in Figure 3.2, which is why the HR

values do not necessarily agree with each other.

Figure 3.2: Examples of HR estimation from IR and depth data. a) Raw signal
taken from IR values of the face over 30 s. b) Bandpass filtered waveform of (a)
with peak detection and estimated HR. c) Raw signal taken from depth values
of the face over 30 s. d) Bandpass filtered waveform of (c) with peak detection
and estimated HR. Note that (a-b) and (c-d) are taken from different datasets.

Hence, it is demonstrated that HR can be estimated from both intensity and

depth data. In the following section, more ROIs are analyzed and their results

45



compared.

3.2.2 Comparing Results of Different ROIs

As described in Section 2.2.2, multiple different ROIs can be used for retrieving

vital sign estimates, each of which have unique characteristics. This is partic-

ularly evident in the face, where subtle movements can significantly skew the

agreement of the estimate with the true value. For example, it may be feasible

to use the entire face as an ROI for HR evaluation with the rPPG method, but

areas such as the eyes and mouth can create artifacts due to blinking or talking.

These areas also do not contain significant physiological signal as shown in Fig-

ure 1.9, providing another reason for their exclusion from the ROI. However, a

reduction in the number of overall pixels in the ROI results in less pixel values

for averaging, which results in a drop in SNR on a per-frame basis. This section

therefore focuses on determining which ROI(s) contain the strongest physiolog-

ical signal, as well as discussing some factors that may influence which ROI to

use for vital signs estimation. Peak analysis was used as the primary method

for HR estimation.

Figure 3.3 shows correlation and Bland-Altman analysis of HR estimation

agreement with various ROIs. Both IR and depth methods are used to analyze

four datasets of a single subject. The subject was sitting 1.5 m away from a

D455 camera, which was recording at 90 fps with a 10 ms exposure time. The

structured light projector was enabled at 150 mW power. Each consecutive set

of three frames was averaged to reduce depth noise, resulting in an effective 30

fps.

The mean difference (solid line) and 95% limits of agreement (dotted lines)

are shown on the Bland-Altman plots. Agreement of the remote HR estimation

with the value obtained from the Dash monitor is represented by the repro-

ducibility coefficient (RPC), which is defined as 1.96 times the SD of the differ-

ences. A lower RPC value corresponds to a tighter spread of differences. Using

the RPC value and the mean difference, the agreement is determined. Pearson’s

r-value squared and the root-mean-square error (RMSE) are also given.
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Figure 3.3: Bland-Altman analysis of different ROIs for HR estimation. Data
was recorded from a single subject. All values are in BPM. Each ROI has a left
and right plot: the left plots display correlation of the remote HR measurement
with the reference ECG value, with the line of best fit (solid). The right plots
show the mean of the two measurements plotted against the difference (remote
HR - ECG HR). The average difference is drawn as a solid line, with 95% limits
of agreement drawn as dashed lines.

While all six methods shown above are seen to make a decent estimation of

HR within 5 BPM, using the IR intensity channel with an ROI of the forehead

and cheeks appear to give the best agreement with the ground truth, with RPC

of 1.6 and a mean difference of -0.82 BPM. The forehead ROI by itself has

a mean difference closer to zero but a poorer RPC, whereas the cheeks ROI

by itself has poorer a mean difference but an RPC closer to zero. Utilizing

both ROIs together gives a higher number of pixels, which contributes to better

agreement.

The first four estimation approaches (a-d) utilize the intensity channel of

the cameras to perform rPPG analysis. Subtle changes in reflected intensity of
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light on different regions of the face allow extraction of blood volume variations

from which a value of HR can be estimated. These approaches using intensity

data are well correlated with the ECG reference value. The approach that ana-

lyzes the depth of the face (lower left) estimates HR from ballistocardiographic

head motion in the forward-backward direction. As this approach is more eas-

ily contaminated with artifacts from gross body motion or other head motion

not associated with pulse, its accuracy is lower than the rPPG approaches. Fi-

nally, it is difficult but possible to retrieve HR from chest movements associated

with cardiac motion (lower right). This approach is difficult due to the very

low amplitude of motion, which is often overshadowed by the dominant respi-

ratory motion of the chest wall [88]. Obstructive or baggy clothing renders this

technique almost impossible to use practically; however, this subject was only

wearing a thin shirt during recording, which allows HR values to be acquired

from chest motion. Overall, the ability to extract physiological information from

both intensity and depth channels creates a highly redundant system and the

ability to switch from one method to another when certain ROIs or channels

are not available. For example, in environments with low illumination such as

night driving where intensity data may not be readily available or reliable, depth

information – assisted by the structured light projector – can still be retrieved

for estimation of vital signs.

It is important to note that some ROIs have inherent drawbacks in their

usage. Examples of ROI obstructions that appeared in recorded datasets are

shown in Figure 3.4. As mentioned before, using the whole face as an ROI

will include regions that may contaminate the physiological signal with motion,

most notably the eyes and mouth areas. Furthermore, strong reflections of

infrared light have been observed from the structured light projector in subjects

wearing glasses (Figure 3.4a), which significantly skews the IR intensity values.

These issues do not occur with the forehead and cheeks ROIs. However, there

are cases where the forehead ROI may be partially or totally obscured, such

as cases involving subjects with longer hair (Figure 3.4b) or wearing headwear

(Figure 3.4c). Due to these factors, the ROI in which the skin is most reliably

exposed is the cheeks.
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Figure 3.4: Examples of artifacts or obscurations within ROIs. a) Bright dot
associated with reflection from glasses. b) Forehead partially obscured by hair.
c) Forehead partially obscured by headwear.

HR analysis of participant data using the cheeks ROI, which has been de-

cided as the ROI with the lowest possibility of artifacts unrelated to motion,

is shown in Section 3.5. This section also compares the two techniques for

estimating HR: peak analysis and frequency analysis.

3.3 Respiratory Rate Results

3.3.1 Extracting Respiratory Waveform

Figure 3.5 shows an example of RR estimation using both intensity and depth.

For simplicity, these datasets did not contain excessive subject motion, meaning

that motion correction methods were not used. The subject was seated approx-

imately 1 m away from a D435 camera. For the intensity channel, the subject’s

face was taken as an ROI, whereas the subject’s chest was used for the depth

channel. The frequency spectrum of these signals was plotted and the highest

frequency bin was recorded as an early RR estimate. A bandpass filter was

then applied to the raw signals with cutoff frequencies determined by the early

estimate. Peak detection was then applied to the filtered waveforms to generate

a final RR estimate based on the time intervals between the peaks. It is shown

that results obtained from face intensity and chest depth are in agreement.
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Figure 3.5: Examples of RR estimation from IR and depth data. a) Raw signal
taken from IR values of the face over 30 s. b) Frequency spectrum of (a), with
peak frequency bin labelled. c) Bandpass filtered waveform of (a) with peak
detection and estimated RR. d) Raw signal taken from depth values of the
chest over 30 s. e) Frequency spectrum of (d), with peak frequency bin labelled.
f) Bandpass filtered waveform of (d) with peak detection and estimated RR.

3.3.2 Comparing Results of Different ROIs

Similar to the reference HR values, reference RR values were obtained from the

patient monitor, which calculates respiration based on the impedance between

ECG leads. Impedance varies based on the amount of air in the lungs, which al-

lows respiration to be detected. During analysis of data obtained from subjects,

it was evident that RR values recorded from the patient monitor were inaccurate

and could not be used as a trustworthy reference. An example of this occurred

in a dataset where the RR reported by the ECG was 56.86 BrPM, which far

exceeded the normal range of RR values, casting doubt on the accuracy of the

ECG for respiration. Hence, the experiment was revised and additional datasets

were recorded with a single subject for the purpose of evaluating RR agreement.

Rather than using the patient monitor as a reference, a digital metronome app

was used to guide the subject to inhale and exhale at certain frequencies. These

frequencies represented the following RR values: 8, 10, 12, 20, 30, and 45 BrPM.

The subject was seated 1.5 m away from a D455 camera, which was recording

at 90 fps with a 10 ms exposure time. Each consecutive set of three frames was
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averaged to reduce depth noise, resulting in an effective 30 fps. Bland-Altman

analysis of the resulting datasets is shown in Figure 3.6.

As evidenced by the mean difference of 0.05 BrPM and the RPC of 0.18,

taking the average depth value of the chest ROI as the respiratory signal (blue)

gave the most accurate estimation of RR. This is expected, as movement of the

chest wall is associated with expansion and contraction of the lungs during res-

piration. However, respiration is also shown to be correlated with head motion,

as shown by the analysis of face depth (red). To further examine this correla-

tion, the raw depth waveforms and bandpass-filtered respiratory waveforms were

plotted in Figure 3.7 for both face and chest ROIs. The plot reveals that the

two waveforms are approximately antiphase to each other; as the chest expands

outward during inspiration, the head appears to move backwards. Similarly,

when the chest contracts during expiration, the head moves forward and re-

turns to its original position. This relationship can be useful in scenarios where

the movement of the chest cannot be detected, such as in the case of a subject

wearing thick clothing. In such a scenario, respiration could still be detected

through analysis of head movement.

Additionally, as shown by the Bland-Altman plot of RR estimations retrieved

from the intensity channel (green), RR can also be estimated from face intensity

data. Respiratory features have been shown to be present in the rPPG signal

(see Section 1.3.2), allowing estimation of RR from the respiratory induced

intensity variations in the IR signal of the face. The ROI consisting of the

forehead and cheeks was used as opposed to only the cheeks ROI, as the subject’s

forehead was reliably exposed in the recordings. The estimations generated from

this approach, while not as accurate as the depth-based methods, still produced

results correlated with the target RR.

3.3.3 Strip Analysis for Respiration Classification

The differences between shallow and diaphragmatic breathing were discussed

in Section 1.2.2. Rapid, shallow breathing is often exhibited by patients in

respiratory distress. Being able to classify the type of breathing would allow
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Figure 3.6: Bland-Altman analysis of RR agreement using different
ROIs/channels. Each ROI has a left and right plot. The left plots display
correlation of the remote RR measurement with the ground truth, with the line
of best fit (solid). The right plots show the mean of the two measurements plot-
ted against the difference (remote RR - reference RR). The average difference
is drawn as a solid line, with 95% limits of agreement drawn as dashed lines.
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Figure 3.7: Negative correlation of chest and face movement during respiration.

identification of such individuals in times of emergency or during infectious

disease screening. It was hypothesized that analyzing motion magnitude of

chest and abdominal areas would reveal differences that could identify distressed

breathing.

In this experiment, the subject simulated two scenarios: one in which they

were breathing diaphragmatically at an approximate rate of 12 BrPM (nor-

mal scenario), and one in which they simulated distressed breathing by taking

shallow breaths at approximately 30 BrPM (distressed scenario). A digital

metronome app was used for timing the breaths. The subject stood 1.5 m away

from a D455 camera that was recording at 30 fps with exposure time of 30

ms. Ceiling lights in the lab provided ambient lighting. Once both datasets

were recorded, the subject’s frontal area was divided into ten horizontal strips

of equal height; each strip was treated as a separate ROI and respiratory wave-

form analysis was performed on each. Figure 3.8 shows the results of waveform

analysis for each strip.

Three metrics were used to quantify the quality of signal from each of the

strip ROIs. The first metric was to simply compare the estimated RR from each

strip to the known ground truth. This provided an indication if the system was

unable to properly detect respiration in a certain strip ROI, but in the event
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Figure 3.8: Raw depth waveforms for frontal body strip analysis. a) Strip ROIs
shown on the subject, labelled from 1 to 10. Joints from skeleton tracking are
also shown in blue. b) Depth data from each strip under a normal breathing
scenario. c) Depth data from each strip under a distressed breathing scenario.

that respiration could be detected, it gave no information about the quality

of the signal. The second metric utilized the detected peaks in the respiratory

waveform for each strip. The SD of the times between successive peaks indicated

how reliably the system was able to retrieve the true respiratory waveform. For

this purpose, it was assumed that the subject’s respiration remained consistent

throughout the recording. As the third metric, the SNR of each respiratory

signal was determined through analysis in the frequency domain. The power

in the frequency bins associated with the detected RR was summed as the

signal power Psignal, and the power in the remaining frequency bins, with the

exception of low-frequency bins below 0.1 Hz, was summed as the noise power

Pnoise. SNR is subsequently calculated as Psignal/Pnoise. Figure 3.9 shows the

results of this analysis.

In the normal breathing scenario, RR can be reliably estimated in eight out
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Figure 3.9: Evaluation of strip respiratory signal for both normal and distressed
breathing scenarios. a) Estimated RR calculated from each strip. The dashed
line indicates the ”ground truth” RR as dictated by the metronome. b) Standard
deviation of respiratory waveform peak locations. c) SNR of respiratory signal
calculated from frequency domain.

of ten strips, whereas only four strips contain an accurate estimation in the

distressed breathing scenario. Regarding the SD graphs, SD tends to be higher

in the lower abdominal strips (6-10) compared to the higher chest strips (1-5). A

higher SD means less consistency in the timing between the detected respiratory

waveform peaks and thus a poorer estimation of the respiratory waveform. It

is expected that the magnitude of breathing-related motion decreases in the

abdomen relative to the chest, which naturally results in higher SD of the peak

intervals. This is also reflected in the SNR graphs, where SNR is generally lower

55



in strips 6-10 compared to strips 1-5. It is noteworthy, however, that the SNR

values for the distressed breathing scenario are significantly lower than the SNR

values for the normal breathing scenario. This reflects the lower magnitude

of motion caused by shallow breathing and associated with respiratory distress.

Thus, higher RR values and lower overall SNR values are indicative of distressed

breathing.

3.4 Motion Analysis

In order to emulate practical scenarios where the subject may not remain en-

tirely still during recording, datasets were taken in which the subject simulated

motion events. Using both the intensity channel and depth channel provided

by the RealSense camera, various motion correction techniques were applied to

these datasets. The depth channel is useful as a direct method of quantifying

motion by visualizing the subject’s position in 3-D space.

3.4.1 Rejecting Severe Motion

In these experiments, the subject simulated sporadic motion events with the

goal of intentionally corrupting the retrieved intensity and depth signals. This

included actions such as stretching and moving in a way that obscured ROI

areas, examples of which are shown in Figure 3.10. The subject was standing

approximately 1 m away from the camera during recording.

Figure 3.10: Examples of simulating severe motion events in a dataset.
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Figure 3.11 shows respiratory analysis of an uncorrected depth signal from

the subject’s chest ROI. Motion events are indicated by arrows on the depth

waveform. In order to better visualize which signal areas are contaminated

by motion, the instantaneous chest velocity is plotted as the first derivative

of the chest depth. To more clearly identify artifact segments, the SD of the

chest velocity is calculated using a 5-second moving window. High SD reflects

significant velocity changes within the window, which directly indicates motion.

As a second metric of identifying corrupted signal, the SNR of the chest

depth signal is also calculated using a moving window as described in Section

2.3.1. It is shown that SNR drops in signal segments where motion artifacts are

present; the drop is significant in this example, implying a strong artifact. When

the uncorrected depth signal is processed to obtain a respiratory waveform, it

is shown that the motion artifacts overpower the periodic respiratory signal,

causing a poor estimation of RR relative to the reference.

Calculating instantaneous depth velocity and SNR creates metrics of iden-

tifying corrupted signal. This allows a threshold to be set at which a signal

segment is considered to be corrupted. Figure 3.12 shows the process of motion

rejection applied to the same dataset as before. In this dataset, SNR was used

as the metric for artifact identification, setting the experimental threshold to be

30 upon observing that artifacts are present in segments with SNR below this

value. Time values are identified in the SNR waveform where the SNR crosses

this threshold. The depth signal is then segmented according to these time val-

ues and the motion artifacts are excised from the signal. The remaining signal

segments are then “stitched” together to form one continuous signal that retains

respiratory information. Performing analysis on this corrected chest depth sig-

nal yields an estimated RR that has a much higher agreement with the true RR

than the uncorrected waveform.

This same rejection approach can also be applied to HR estimation. Figure

3.13 shows another dataset with simulated motion events affecting the intensity

signal from the face ROI. Instantaneous intensity change is calculated in the

same fashion as instantaneous chest velocity, and the SD of the intensity change
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Figure 3.11: Results of RR estimation on a motion-contaminated dataset before
rejection. a) Chest depth signal contaminated by motion events, indicated by
arrows. b) Instantaneous chest velocity calculated as derivative of (a). c) Stan-
dard deviation of chest velocity over time. d) SNR of the chest depth signal
over time. e) Generated respiratory waveform without any motion correction,
resulting in a poor estimation of RR.

is calculated using a 5-second moving window. While performing HR analysis

on the uncorrected face intensity waveform gives a decent estimate due to the

prevalence of the rPPG signal, corruption due to motion events is still present

in the filtered signal. Rejection this motion also has the potential to improve

the estimate further.

In this example, rather than using the SNR to identify motion events as

was done in Figure 3.12, the SD of intensity change is used. Motion-corrupted

signal segments were chosen by identifying segments with an SD higher than

0.6, a value which was determined by observing the SD of normal segments and
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Figure 3.12: Motion rejection applied to a contaminated dataset for RR estima-
tion. a) SNR threshold is set to 30 and time values where the SNR crosses this
threshold are identified. b) Chest depth signal is segmented to remove motion
artifacts. c) A corrected depth signal is formed by concatenating remaining
signal segments. d) The corrected respiratory waveform with a more accurate
RR estimate.

creating a threshold value. Removing these corrupted segments and concatenat-

ing the remaining segments creates a continuous signal on which HR analysis

is performed. The resulting estimated HR of 78.1 BPM is much closer to the

reference HR of 78.3 BPM.

This method of motion rejection should only be used when severe motion

artifacts are identified and it is unlikely that any physiological information can

be derived from the signal. In cases where less severe motion occurs, it may be

possible to salvage a physiological signal that can lead to a vital sign estimation.

This would involve filtering out the motion-induced signal or using an additional

reference to separate it from the desired waveform. These techniques are referred

to as “motion compensation”.
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Figure 3.13: Results of RR estimation on a motion-contaminated dataset be-
fore rejection. a) Face intensity signal contaminated by motion events, indicated
by arrows. Note that an intensity value of zero means that the face detection
algorithm was unable to find an ROI in that frame due to obscuration. b)
Instantaneous intensity change calculated as derivative of (a). c) Standard de-
viation of change in intensity over time. d) Generated blood pulse waveform
without any motion correction, resulting in a suboptimal estimation of HR.

3.4.2 Single-Camera Motion Compensation

Before moving to more complex system configurations, experiments were per-

formed with potential motion compensation using a single camera and FOV.

Prior to implementation of skeleton tracking for ROI generation, it was im-

possible to accurately track an ROI as a subject moved within the frame, and

manually drawn ROIs would quickly become inaccurate once the subject moved.

Performing skeleton tracking to obtain joint coordinates on each frame of the

dataset allows an ROI to be generated for every frame, allowing a continuous

signal to be obtained by dynamically resizing and repositioning the ROI accord-

ing to where the subject is located within the frame. Using this approach, an

experiment was performed with the goal of retrieving a respiratory waveform
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Figure 3.14: Motion rejection applied to a contaminated dataset for HR estima-
tion. a) SD threshold is set to 0.6 and time values where the SNR crosses this
threshold are identified. b) Face intensity signal is segmented to remove motion
artifacts. c) A corrected intensity signal is formed by concatenating remaining
signal segments. d) The corrected blood pulse waveform with a more accurate
HR estimate.

under simple subject motion. A dataset was taken of a subject moving around

a room and pausing at various locations while still facing the camera. The

skeleton tracking algorithm was then applied to the dataset, chest ROIs were

generated from the skeleton joints, and a respiratory waveform was obtained.

Results are shown in Figure 3.15.

The first 15 seconds of the recording are taken with the subject stationary

in order to retrieve their RR to be used as a reference. During movement, the

subject kept their breathing as constant as possible. It was found that even

during motion, respiration could be extracted from chest movement, regardless

of where the subject was located. The estimated RR extracted under motion

was in agreement with the reference RR obtained during the stationary period.
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Figure 3.15: Experimenting with skeleton tracking for single-camera motion
compensation. Chest ROI is indicated in yellow on sample images from the
dataset. RR obtained under motion is in agreement with reference RR obtained
when stationary.

While this experiment demonstrated the effectiveness of ROI tracking, it

became evident that it was not a universal solution. Specifically, motion com-

pensation using skeleton tracking fails when the movement is periodic in nature.

This is one of the major limitations of a single-camera system. To demonstrate

this, another experiment was performed with the same setup as previously, in

which the subject moved back and forth at a periodic rate. Results are shown

in Figure 3.16.

Periodic gross body motion appears in the frequency spectrum at a signifi-

cantly higher power than respiration-related movement due to its much higher

magnitude. Hence, the system mistakenly identifies it as a physiological sig-

nal and filters the raw depth waveform as such. The results are a respiratory

waveform and RR estimation that are completely inaccurate compared to the

reference RR. A more robust approach was required for better motion compen-

sation.
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Figure 3.16: Example where periodic gross body motion dominates the physio-
logical signal in the chest depth, causing an overestimation of RR.

3.4.3 Multi-Camera Motion Compensation

A single-camera system has no secondary reference to compare measurements

with, leaving it susceptible to a variety of artifacts. As demonstrated in the pre-

vious section, periodic gross body motion cannot be distinguished from phys-

iological data with a single camera. The introduction of a second camera is

necessary to provide the system with an additional source of information that

it can compare against the original measurement to isolate certain signal char-

acteristics.

With the goal of improving motion compensation, a method was devised that

made use of the expansion and retraction of the chest during respiration. Two

cameras were used to create the “front-back” configuration illustrated in Figure

2.5a. The cameras were diametrically opposed, facing inward, and positioned 2

m away from each other. During data acquisition, the subject stood in between

the two cameras; the cameras were subsequently designated as the front and

back cameras based on which side of the subject they were imaging. Figure 3.17

shows the data and results of this experiment. To simulate motion, the subject

moved throughout the camera frame in a periodic fashion. Skeleton tracking was

used to dynamically resize and reposition the chest ROI as the subject moved.

Depth data provided by both cameras represents distance from each camera to

the subject. When these signals are plotted, it shows an antiphase correlation
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as expected. Motion compensation analysis involves subtracting the front and

back distances from the total distance of 2 m in order to acquire the depth of

the chest as a time domain signal. This is further described in Section 2.3.3.

Obtaining chest depth over time allows isolation of respiratory chest movement,

which can then be analyzed as usual to obtain a bandpass filtered respiratory

waveform. The resulting estimated RR is in strong agreement with the true

RR.

Figure 3.17: Example of motion compensation using two cameras. a) Experi-
mental setup. b) Depth data from front and back cameras represents distance
from the camera to the subject and shows periodic body movement. c) Raw
respiratory waveform is isolated from the front and back signals. d) Filtered
waveform generated and estimated RR is in agreement with the true RR.

Using this two-camera configuration, the system becomes robust to subject

movement in two dimensions (front-to-back and side-to-side) when detecting
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respiration, even if the movement is periodic in nature. While it is an improve-

ment over the single-camera approach, this method is still limited in certain

scenarios. It is contingent upon the skeleton tracking algorithm being able to

identify a suitable ROI, which limits the angle at which the subject can be fac-

ing. For example, a subject facing at a 90-degree angle to the camera would

not present a feasible ROI, as the chest and back are not visible. Hence, the

method is not yet robust to rotational motion.

As a further expansion to the system that would allow the subject’s chest

and back to always be visible, a three-camera system is suggested, as shown in

Figure 2.5c. With three inward-facing cameras angled at 120 degrees to each

other, the chest and back will always be visible to at least one camera, allowing

vital signs estimation using skeleton tracking regardless of the subject’s position

or angle. While the system was assembled and sample datasets were taken,

proper software has not yet been developed at the time of writing this thesis to

process the data. As such, it is left for future work.

3.5 Participant Data Analysis

For a more in-depth statistical analysis of HR agreement, members of the lab

volunteered to be recorded by the remote monitoring system while also con-

nected to the bedside patient monitor. These datasets were captured at 90 fps,

but in order to reduce the depth noise, every consecutive set of three frames

was averaged to achieve an effective 30 fps. Averaging three frames reduces

the depth noise by a factor of
√

3 ≈ 1.732. During recording, subjects were

positioned 1.5 m away from the camera and told to remain still. Since remote

RR values were in strong agreement with the reference values as described in

Section 3.3.2, analysis of participant data was focused on HR estimation.

This section is devoted to assessing the agreement of the remote system

using the two methods of HR estimation discussed in Section 2.2.3, namely

peak analysis and frequency analysis. The former involves estimating HR based

on the time intervals between successive peaks in the filtered waveform, whereas
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the latter estimates HR from the frequency bin with the highest power within

the specified HR bandwidth. Figure 3.18 shows a comparison of these techniques

with datasets taken from six subjects at rest, all volunteers from the lab. The

cheeks ROI was used for retrieving intensity values that were used to estimate

HR, as it was assessed as being the most reliable ROI in Section 3.2.2.

Figure 3.18: Bland-Altman analysis of participant data using two HR estimation
techniques. All values are in BPM. Note the cluster of datasets with poor esti-
mations circled in orange, see below for possible explanations. a) Peak analysis.
b) Frequency analysis.

The frequency analysis approach has a mean difference of 0.17 BPM com-

pared to the peak analysis approach with -2.5 BPM mean difference. However,

the frequency approach also has significantly greater RPC, meaning that there

was a wider spread of estimates with frequency analysis.
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Agreement between the remote measurement and the ECG value is generally

high for mid-range HR values. When observing the correlation plots however, it

is evident that the estimation agreement of both methods appears to be lower

for abnormally low (< 60 BPM) or high (> 90 BPM) HR values compared

to mid-range values. Previous analysis conducted on datasets with a high HR

value returned accurate estimations, as shown in Figure 3.19, establishing that

the system is capable of detecting high HR values. Therefore, it is important to

examine the participant datasets in which poor estimations were made. These

particular datasets were linked to three subjects, who will be referred to as

subjects 1, 2, and 3.

Figure 3.19: Example of good estimation with a high resting HR.

Subject 1 had an average resting HR of 102.1 BPM. However, HR agreement

among their datasets was generally poor; estimations averaged 89.9 BPM for the

peak analysis method and 72.6 BPM for the frequency analysis method. Upon

inspecting this subject’s data, significant subject motion was observed in some

datasets that corrupted the physiological signal. Hence, motion rejection was

applied in an attempt to isolate a BVP signal. Figure 3.20 shows an example

with one of subject 1’s motion-corrupted datasets.

The HR estimate after application of motion rejection is much more ac-
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Figure 3.20: Motion rejection applied to participant dataset for HR estimation.
a) Face intensity data with significant motion corruption. Estimated HR is in
very poor agreement with the reference HR. b) SD of face intensity. c) A signal
segment with low SD is identified and used for further analysis. This segment
has notably less motion corruption. d) HR analysis performed on the signal
segment produces an HR estimate that is much more accurate.

curate compared to analysis of the raw signal. However, some datasets of this

subject did not have excessive motion, but the BVP could still not be accurately

extracted. Similar cases were observed for subject 2, described below.

Subject 2 had an average resting HR of 98.5 BPM. Like subject 1, HR

agreement in their datasets was poor, with estimations averaging 77.2 BPM for

peak analysis and 72.3 BPM for frequency analysis. No excessive motion was

observed in subject 2’s data. It is hypothesized that the inaccurate estimations

from subjects 1 and 2 are due to subject-specific characteristics, such as skin

pigmentation, which has been shown to adversely affect the SNR of PPG signal

[58], or poor blood circulation. This assumption cannot be validated on such

a small sample size, necessitating the future recruitment of a larger cohort (see
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Section 4.1).

Subject 3 had an average resting HR of 59.72 BPM. This is noteworthy

because the bandpass filter used in the physiological signal processing has a

minimum passband frequency of 60 Hz. Therefore, HR values lower than 60

BPM may not be accurately detected by the system. When a Fourier transform

was performed on the IR signals to retrieve their frequency spectra, a peak

was present at the frequency of the ECG HR value (Figure 3.21). Thus, it

can be established that the lower bandpass cutoff frequency prevented a proper

estimation of HR. While lowering this cutoff frequency would allow detection

of lower HR values such as those seen in this subject, doing so may potentially

affect the estimation accuracy of other datasets. This would need to be evaluated

if changes are made to the filter parameters.

Figure 3.21: Frequency spectrum of a dataset from subject 3. The HR frequency
peak (blue dot) is visible but is below the cutoff frequency (red line) for HR
estimation. Hence, the correct peak was not picked up by the system.

3.6 Summary

Successful isolation of BVP and respiration were demonstrated first in stationary

subjects, allowing accurate HR and RR estimations, respectively. The estima-
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tions retrieved from different ROIs and channels were compared. Most ROIs

examined in this chapter are feasible for vital signs estimation; results from

Bland-Altman analysis are summarized in Table 3.1 for HR estimation (Section

3.2.2) and Table 3.2 for RR estimation (Section 3.3.2). The strongest agree-

ment, determined by comparing RPC and RMSE values, is observed for the

intensity of the cheeks ROI for HR, and the depth of the chest ROI for RR.

Table 3.1: Summary of Bland-Altman analysis for HR estimation in various
ROIs. Values are in BPM.

Intensity Depth
Face Forehead Cheeks Forehead+Cheeks Face Chest

Mean difference 0.14 0.66 -1.7 0.82 -1.8 -1.5
Upper limit of agreement 2.0 1.1 -0.32 0.73 2.4 4.8
Lower limit of agreement -1.7 -2.4 -3.1 -2.4 -1.8 -7.9
Pearson r-value squared 0.89 0.91 0.91 0.90 0 0.83
Reproducibility coefficient 1.9 1.7 1.4 1.6 4.2 6.3
RMSE 0.63 0.85 0.60 0.70 1.2 0.66

Table 3.2: Summary of Bland-Altman analysis for RR estimation in various
ROIs. Values are in BrPM.

Chest Depth Face Depth Forehead+Cheeks IR
Mean difference 0.05 0.34 -0.36
Upper limit of agreement 0.23 1.3 8.1
Lower limit of agreement -0.13 -0.58 -8.8
Pearson r-value squared 1.0 1.0 0.90
Reproducibility coefficient 0.18 0.91 8.5
RMSE 0.63 0.76 6.0

Motion analysis was successfully performed on datasets simulating corrupt-

ing motion, demonstrating the usefulness of motion rejection and motion com-

pensation, the latter of which has been expanded to a multi-camera configura-

tion. Analysis of participant data for HR estimation revealed overall agreement,

with the exception of a few datasets that were linked to certain subjects. These

datasets were investigated in detail, and it was speculated that skin pigmenta-

tion may have played a role in lower estimation agreement. It is essential that

a larger cohort of participants is recruited to test this theory.
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Chapter 4

Future Work

Despite the system discussed in this thesis representing a step forward in remote

monitoring of vital signs, it requires further development in order to realize its

full capabilities. Several potential future advancements have been identified and

will be discussed in this chapter; they are ordered by highest to lowest priority.

Future students may be able to use these suggestions as guidance for interesting

research directions.

4.1 Recruitment of External Participants

Due to circumstances surrounding the ongoing COVID-19 pandemic and sub-

sequent lab shutdown affecting the ability to recruit external participants, the

analysis and results discussed in this thesis were performed on a low number of

subjects. From a statistical perspective, the amount of meaningful information

that can be retrieved from this data is limited. In order to gain further insight

into the performance of the system, it is highly recommended that the analysis

is conducted on a higher number of subjects when possible. These subjects

should ideally have a wide range of HR and RR values at rest to fully test the

range of the system.
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Recruitment of external participants would also permit analysis of the effects

of different skin tones on the accuracy of the monitoring system. It has been

shown that the SNR of rPPG signals decreases with increasing skin pigmentation

[58]. While it was theorized that skin pigmentation played a role in at least one

of the subjects studied in this thesis, conclusive statements cannot be made

without a larger cohort of participants. The use of depth information in this

system is likely to contribute to overcoming the issue posed by darker skin

tones. Furthermore, the shape of the PPG waveform has been shown to change

according to the amount of blood circulation in the subject [89]. While this

can be a particular concern in hospitalized patients whose blood flow may be

reduced, the effect may also be present across a larger group of participants

with varying states of overall health. In these cases, it may be more difficult to

acquire an accurate estimate of vital signs.

An ethics protocol for recruiting external participants was first submitted

to the Research Ethics Board at the University of Toronto in November 2019

and approved in January 2020. An amendment to the protocol was approved

in September 2020. This protocol permits recruitment of 20 healthy student

volunteers from which data can be recorded for analysis. While current uni-

versity policies do not allow unaffiliated persons to enter the lab, participant

recruitment can commence as soon as these restrictions are lifted.

After evaluation is performed on healthy participants and the accuracy of

the system is validated, it would be ideal as a next step to also record and

analyze data from (1) elderly persons in a home environment and (2) patients

in a clinical environment. These are two major application scenarios that have

motivated the project thus far, and it is important to assess whether or not the

system can derive meaningful insight into the overall health of these individuals.

Even further steps would be to implement warnings or alarms if an abnormal

health status is detected.
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4.2 Improved Scenarios and Analysis Methods

Participant data analysis (Section 3.5) was limited to scenarios where the subject

was standing still. Additionally, these datasets were taken at resting conditions,

which limited the potential range of HR and RR that were tested. For a more

thorough analysis of the system’s capabilities, it is recommended that data is

analyzed under a wider variety of scenarios. One such example is during exer-

cise, as both HR and RR are elevated. However, motion artifacts are significant

during physical activity, making PPG measurements difficult, especially for re-

mote implementations. For this reason, an exercise routine should be chosen

that limits upper body movement as much as possible, such as the use of an

exercise bike.

Another scenario to be investigated is a subject lying in bed, in either a

supine or slightly inclined position. Subjects in a clinical environment are likely

to be in bed, rather than standing or sitting upright. However, it has been

shown that PPG amplitude is slightly lower in supine subjects [90], likely due

to venous pooling caused by gravity. Hence, it may be more difficult to estimate

vital signs from rPPG. Conversely, chest movement due to respiration may be

easier to detect via the depth channel in supine subjects, as the subject’s back is

against the bed surface, potentially making chest movements more prominent.

Gross body motion is less concerning with subjects in bed, which may result in

motion compensation techniques being unnecessary.

In addition to a wider range of scenarios, the signal processing techniques

used in this system were limited in scope compared to what has been done in

literature. More complex algorithms have been described [23] that may poten-

tially allow vital signs to be extracted with higher accuracy and under more

challenging scenarios. Examples include wavelet decomposition [67] and blind

source separation, though the latter requires multiple channels. Some studies

have utilized information from the background of the camera images to eliminate

corrupting factors such as illumination [73]. Our datasets contained examples

where motion or illumination prevented vital signs from being estimated. It is

believed that a more sophisticated method of analysis would permit estimates
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to be made in these scenarios.

As a method of improving estimates that does not require additional al-

gorithms, it may be feasible to use one vital sign to estimate the other. The

current system implementation detects HR and RR within relatively wide fre-

quency bandwidths (1.0-2.16 Hz for HR, 0.1-1.0 Hz for RR). Our RR detection

method improves on this by selecting an early estimate from the frequency spec-

trum to perform bandpass filtering. In a similar way, it is speculated that if

either HR or RR are known, the other vital sign can be better estimated using

this known information. For example, a subject typically has high HR and RR

during exercise. If a high RR is detected, the system can attempt to estimate

HR in a narrower bandwidth corresponding to the upper half of the 1.0-2.16 Hz

range. This may result in more accurate estimations, but is dependent on the

relationship between the two vital signs. Also, this correlation is not represen-

tative of all scenarios, such as a subject intentionally slowing their breathing to

calm down. This approach should therefore be implemented dynamically and

evaluated.

Improvements to equipment would also be beneficial. Intensity-based mea-

surements in this system were taken using the 8-bit IR channel of the RealSense

cameras, which provides 256 grey levels. The amplitude of intensity variations

observed due to blood volume changes were fractions of a grey level, only ob-

tainable from averaging several pixels in an ROI. An increased number of grey

levels could make the system more sensitive to intensity variations, which would

allow vital signs to be measured under more challenging conditions. While the

RealSense camera is capable of capturing 16-bit IR, it is unrectified and Intel

does not recommend its usage. It may be necessary to look for new hardware

in this case. The RealSense cameras are simply a combination of intensity and

depth channels in a certain configuration; it would be ideal to assemble a system

that is better suited to this particular application. For example, the intensity

channel of the RealSense camera is sensitive to the entire visible spectrum and

the NIR spectrum up to 865 nm, but it has been shown that certain wave-

lengths (e.g. green) are better at capturing rPPG signals [52]. Therefore, an

ideal intensity channel would only be sensitive to these wavelengths to retrieve
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a stronger rPPG signal. A better depth channel can be accomplished with a

next-generation 4f imaging system, which is discussed in Section 4.6.

The maximum frame rate used for recording data in this thesis was 90

fps. This value is more than sufficient for capturing physiological information.

Higher frame rates may allow for more detailed analysis of subtle body motion

that contributes to motion artifacts. Calculating ROIs for each frame would re-

sult in smoother ROI tracking as the subject moves. However, increased frame

rate is limited by processing bandwidth constraints and exposure times; higher

frame rates require shorter exposure times, resulting in darker images.

While motion is most often considered detrimental to vital signs monitoring,

it may be worthwhile to consider motion as a “vital sign” itself. For example,

hospitalized patients who exhibit frequent motion may be more alert and func-

tional than those who move less. Conversely, patients who are incapacitated

would naturally exhibit less motion. This may be worth exploring in a future

project.

4.3 Multi-Camera System Expansion

As mentioned in Section 3.4.3, progress into a three-camera setup has been made

for motion compensation that would provide increased robustness to subject

position and angle. This setup utilizes the ”360-degree” camera configuration

shown in Figure 2.5c. An example of the FOVs given by the three cameras is

shown in Figure 4.1.

In order to be robust to subject rotation, the system must be capable of

ranking its three cameras in terms of which has the better view of the subject.

The two highest ranked cameras would have an adequate front and back view of

the subject with which to perform motion compensation. As the subject moves,

however, the cameras with the best view are likely to change, meaning that

the system must constantly keep track of this ranking and dynamically switch

FOVs if an ROI becomes invalid in one camera’s FOV.
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Figure 4.1: FOVs of the three cameras in the 360-degree camera configuration.
Skeleton tracking is applied to show an approximate chest ROI.

Another task that can be performed with the 360-degree camera configura-

tion is generation of a 3-D model of the subject using depth images. In this

approach, depth images from each of the three cameras are converted to 3-D

surfaces. Knowledge of the cameras’ relative locations allows their three coor-

dinate spaces to be converted into a single coordinate space. The 3-D surfaces

can then be aligned with each other to generate a 3-D model of a body part, as

shown in Figure 4.2.

Creation of a 3-D model allows much more detailed analysis of motion and

how certain body parts deform with physiological activity. The head and torso

are prime ROIs for this reason. Ballistocardiographic head motion and chest

motion due to respiration could be easily visualized with a 3-D model. With this

approach, it is vital that depth noise is minimized in order to obtain stable 3-D

models and visualize small movements associated with cardiac and respiratory

activity.
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Figure 4.2: 3-D surfaces used to create a 3-D model of a subject’s torso. Surfaces
must first be converted to a single coordinate space to be aligned with each other.
Images generated with Autodesk Meshmixer.

4.4 Motion Compensation Analysis for

Heart Rate

The motion compensation techniques described in Sections 3.4.2 and 3.4.3 were

used to robustly estimate RR. Attempts were made to perform the same pro-

cessing for HR estimation, but the amplitude of intensity and depth changes

corresponding to HR were found to be too low to be salvaged from even minor

motion. Changing illumination from the subject moving throughout a room

created noisy intensity signals, whereas ballistocardiographic head motion was

too small to be detected after compensation techniques were applied. However,

motion rejection can still be applied for HR measurements to remove corrupted

signal, as demonstrated in Figure 3.14. Ideally, a method should be developed

to extract physiological information relating to HR even under constant motion.

This may potentially involve the addition of one or more channels, such as RGB,

to apply source separation on face intensity data gathered from each channel.

As described in the previous section, more complex signal processing methods

could also be applied.
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4.5 Remote Measurement of Oxygen Saturation

While HR and RR are important physiological parameters, they are only two of a

larger number of vital signs that are considered essential for health monitoring.

Oxygen saturation in blood is an important vital sign to monitor as cells in

the body require a constant supply of oxygen. In order to measure oxygen

saturation using PPG, it is necessary to take measurements at two wavelengths,

typically red (660-700 nm) and NIR (800-950 nm) wavelengths. Red and NIR are

used because of different absorption of HbO2 and Hb at these wavelengths; red

wavelengths are more sensitive to arterial blood saturation levels [83]. The ratio

of PPG amplitude from red light over PPG amplitude from NIR light is used to

estimate oxygen saturation [51]. Since PPG amplitude is itself calculated as the

ratio between its pulsatile AC component and its non-pulsatile DC component,

this method of measuring oxygen saturation is sometimes referred to as the

“ratio-of-ratios” method.

Remote measurement of oxygen saturation is complicated because differ-

ent wavelengths have different penetration depths. Hence, issues arise with

calibrating the oxygen saturation measurement. Additionally, contact-based

PPG involves a deeper light penetration depth than rPPG, meaning that rPPG

measurements are much lower in amplitude than contact PPG, complicating

calibration even further [91]. Some success has been found in literature with

red and NIR wavelengths, as well as red and green wavelengths [83], suggesting

that remote oxygen saturation measurements are feasible. However, low signal

strength remains an issue, leaving remote measurement of oxygen saturation as

an open-ended research direction that is worth exploring. It is important to

note that this is likely to become a long-term project without easy solutions,

which is why it is placed on lower priority than previously mentioned tasks in

this chapter.
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4.6 Next Generation Imaging Systems

The stereo triangulation method used by the RealSense cameras is capable of

depth imaging at a minimum depth unit of 0.1 mm. However, stereo imaging

has inherent drawbacks, such as depth error being proportional to the distance

squared. Another project that has been worked on concurrently by other mem-

bers of the lab is development of a 4f lens system for superior depth resolution.

A 4f system is defined as an optical system consisting of two lenses: Lens 1,

placed one focal length away from the object of interest, and Lens 2, placed one

focal length away from the image plane. The distance between the two lenses is

equivalent to two times the focal length. It then follows that the total distance

between the object and image plane is four times the focal length, hence a “4f”

system. Figure 4.3 shows a diagram of the lens placement.

Figure 4.3: Diagram of a 4f system. “f” represents one focal length. Taken from
[92].

A property of lenses is that if an object is placed one focal length in front

of the lens, then the object’s Fourier transform is generated one focal length

behind the lens; this point is referred to as the Fourier plane. By using a spatial

light modulator (SLM) to place a phase or amplitude mask at the Fourier plane,

an optical transformation can be applied to the object. Lens 2 will then apply

an inverse Fourier transform to generate a modified image of the object. The

response of the system to a point source is referred to as the point spread

function (PSF). This technique can be used to create structured light patterns
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with a changing appearance based on depth [93]. An example is a double-helix,

in which two lobes appear in the PSF that rotate according to distance, as

shown in Figure 4.4. This allows sub-micron depth resolution to be achieved.

Figure 4.4: Double-helix PSF showing two rotating lobes that change position
according to distance. Modified from [93].

While the depth-based measurements described in this thesis does not neces-

sitate the use of sub-micron resolution, better accuracy is desirable for tracking

subtle physiological movements such as ballistocardiographic head motion. Fur-

thermore, highly sensitive depth measurements may potentially allow remote

visualization of pulsation in arteries as another method of pulse estimation. A

future student with an interest in optics and signal processing may be interested

in this research direction.
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Chapter 5

Conclusions

The remote monitoring system described in this thesis presents its novelty in

the following areas: (1) utilizing depth information to visualize physiological

movements and supplement intensity data, creating a highly redundant system,

(2) classifying motion using instantaneous change, SD, and SNR, (3) applying

rejection to remove signal segments corrupted by motion, and (4) using single-

camera and multi-camera configurations to retrieve physiological information by

compensating for subject motion. The existing system is capable of extracting

HR and RR from intensity and depth channels, as well as identifying motion-

corrupted signal, quantifying the severity of the artifact, and utilizing correction

methods to salvage the physiological signal.

In this thesis, it was demonstrated that HR and RR can be reliably and in-

dependently estimated from several ROIs using both depth and intensity chan-

nels. This creates a redundant system that has numerous independent methods

of estimating vital signs in the event that one or more of these methods fails.

Bland-Altman analysis was performed to assess the agreement of the remote

monitoring system with either a clinical gold standard (HR) or a known ground

truth (RR). Results of this analysis are summarized in Table 3.1 and Table 3.2.

Best agreement scores were observed when using the cheeks ROI and intensity

channel for HR estimation, and the chest ROI and depth channel for RR estima-
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tion. These results can be compared to results from other groups in literature

that only used intensity measurements, shown in Table 5.1.

Table 5.1: Comparison of the novel system using both intensity and depth to
other intensity-based systems in literature. For the novel system, face intensity
was used for HR evaluation, whereas chest depth was used for RR evaluation.

HR (BPM) RR (BrPM)
Mean difference (bias) RPC RMSE Mean difference (bias) RPC RMSE

Novel system -1.7 1.4 0.6 0.05 0.18 0.63
2011 Poh et al. [53] 0.95 1.62 1.24 0.12 2.6 1.28
2015 Kumar et al. [55] -0.02 0.735 - - - -
2017 Al-Naji et al. [67] 1.28 0.615 1.32 0.195 1.2 1.433

Studies using depth-based methods for HR and RR estimation are rarer than

those using intensity-based methods, and even fewer utilize Bland-Altman anal-

ysis. Most implementations use the Microsoft Kinect for depth measurements.

Hence, the results of the novel system were compared to Kinect-based systems,

as shown in Table 5.2.

Table 5.2: Comparison of the novel system to depth-based systems in literature.
Both studies utilized the Microsoft Kinect, which is the most common depth
sensor used for vital sign estimations in prior art.

HR (BPM) RR (BrPM)
Mean difference (bias) RPC RMSE Mean difference (bias) RPC RMSE

Novel system -1.7 1.4 0.6 0.05 0.18 0.63
2014 Bernacchia et al. [94] -0.68 3.03 - 0 0.01 -
2020 Addison et al. [95] - - - 0.04 1.32 0.66

Based on these values, the design specification discussed in Section 1.4,

namely 3 BPM accuracy for HR and 3 BrPM accuracy for RR, has been met.

The accuracy of this system is comparable to that of other systems in literature,

but with the addition of a depth channel for added robustness. RR estimated

from depth is more accurate compared to intensity-based measurements. How-

ever, it is important to note that the analysis performed on our novel system

was evaluated only on a single subject. Hence, statistical values shown in Table

5.1 may not fully represent the performance of the system. It is vital that data

from a larger cohort of participants is evaluated for a better statistical analysis

as future work.
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Analysis of data retrieved from volunteer lab members revealed high agree-

ment of HR for the majority of datasets. However, dataset results taken from

certain subjects tended to be less accurate. These inaccuracies could occasion-

ally be traced to excessive gross body motion, but there were datasets without

excessive motion in which a stable BVP waveform could still not be obtained.

It was hypothesized that subject-dependent factors such as skin pigmentation

were responsible, as inaccurate estimations were linked to certain subjects, but

this could not be validated given the small sample size. This issue must be

explored in a larger cohort of participants.

Motion correction was successfully performed on datasets contaminated by

motion artifacts. Rejection was applied when severe artifacts were identified via

SNR or instantaneous depth/intensity changes, removing signal segments that

were corrupted by motion. When motion was present but less severe, compen-

sation was applied. Single-camera compensation using skeleton tracking was

successful with non-periodic body motion, but failed when the overall motion

was periodic in nature. This led to the development of a two-camera configura-

tion in which a second camera was introduced to act as a reference. This con-

figuration was robust to periodic movement in two dimensions, but failed when

the subject was standing at angles where the chest and back were not visible by

either camera. As an planned system expansion, a three-camera configuration

would have the chest and back always visible by at least one camera. These

configurations represent a gradual improvement to motion robustness that is

provided primarily due to the combination of intensity and depth channels.

This remote monitoring system has applications in several potential use

cases, each with different requirements to better suit the scenario. For example,

a patient in a clinical setting exhibits minimal movement, which may allow for

increased sensitivity. Conversely, in the case of infectious disease screening in

a public environment such as an airport, subjects are more likely to be moving

and thus there is a bigger emphasis on motion correction. Future development

of the system may allow these aspects to be configured.

This thesis has shown that motion tolerance can be improved through the use
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of multiple cameras. However, there are some environments where introducing

additional cameras is not desirable, such as in a tightly-packed hospital room, as

they can become intrusive and can raise concerns about privacy. In these cases,

a single camera may be preferred. While this means that motion compensation

techniques cannot be applied, there may be potential for other algorithms to be

explored that can correct for motion in a single-camera scenario.

Some limitations of the system that could be improved in future work were

discussed in Chapter 4. The system has not yet been evaluated in participants

on scenarios such as exercise and supine position. Furthermore, several poten-

tial hardware and software improvements were discussed. While a two-camera

system provides robustness to gross body movement in two axes, it is not ro-

bust to rotational motion, which necessitates an expansion to a three-camera

system. Each of these limitations can and should be addressed in future research

projects.

The progress described in this thesis paves the way for several potential

advancements and projects. It is the author’s hope that future students con-

tinue to build upon and improve the remote monitoring system to reach its full

potential.
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Chapter 6

Appendix

6.1 Dash Monitor Data Extraction

6.1.1 Numerical Values

An auxiliary (aux) RJ-45 port at the back of the monitor provides a serial con-

nection that enables numerical vital values to be exported to the PC. A custom

cable was wired to connect the Dash’s aux port to the RS-232 serial port on the

PC. A third-party program, “VitalSignsCapture” developed by xeonfusion on

SourceForge [96], was used to parse the Dash’s serial output into a timestamped

text file. Using the highest polling frequency, an entry for numerical HR, RR,

and SpO2 could be generated every 2 seconds. The data is logged to a CSV file.

6.1.2 ECG Waveform

ECG waveform is extracted using the Defib Sync port on the back of the Dash

monitor; pins 3 and 7 of the port provide an analog voltage that represents the

ECG waveform. An Arduino Nano was configured to be an analog-to-digital

converter (ADC), enabling ECG to be recorded using a voltage divider as shown

in Figure 6.1. As the Arduino is only capable of reading positive voltages, the
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voltage divider serves to boost the ECG analog voltages above zero to prevent

the waveform from being clipped. The resolution of the Arduino ADC is 10

bits, and the serial baud rate was set to 115,200 bits per second (bps). The

application PuTTY was used as a serial monitor with automatic logging to a

text file.

Figure 6.1: Voltage divider from the Dash ECG analog (VECG) to the Arduino’s
analog input pin (Vout).

6.2 USB Bandwidth Limitations

Connecting multiple RealSense cameras may create issues with USB bandwidth.

Each camera was connected to the PC using its own dedicated bus channel with

up to 5 Gbps of bandwidth. A dedicated PCIe card was installed to facilitate a

three-camera setup.

6.3 RealSense Camera Hardware Triggering

In a multi-camera configuration, it is necessary for each camera to capture

images synchronously. RealSense cameras have a master-slave feature where

one camera can send a triggering pulse to the others. A port in each camera

allows them to be connected together. Pin 5 is the sync port and pin 9 is the

ground. Cameras were connected in a multi-drop configuration using jumper
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wires for easy connections. The connector part number is ASSHSSH28K152 and

the housing part number is SHR-09V-S-B.
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